Rousson Mikaël, Xu Chenyang
Department of Imaging and Visualization Siemens Corporate Research, Princeton, NJ, USA.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):848-55. doi: 10.1007/11866763_104.
The segmentation problem appears in most medical imaging applications. Many research groups are pushing toward a whole body segmentation based on atlases. With a similar objective, we propose a general framework to segment several structures. Rather than inventing yet another segmentation algorithm, we introduce inter-structure spatial dependencies to work with existing segmentation algorithms. Ranking the structures according to their dependencies, we end up with a hierarchical approach that improves each individual segmentation and provides automatic initializations. The best ordering of the structures can be learned off-line. We apply this framework to the segmentation of several structures in brain MR images.
分割问题出现在大多数医学成像应用中。许多研究团队正在朝着基于图谱的全身分割方向努力。出于类似的目标,我们提出了一个用于分割多个结构的通用框架。我们不是发明另一种分割算法,而是引入结构间的空间依赖性来与现有的分割算法协同工作。根据结构间的依赖性对结构进行排序,我们最终得到一种分层方法,该方法可改进每个单独的分割并提供自动初始化。结构的最佳排序可以离线学习。我们将此框架应用于脑部磁共振图像中多个结构的分割。