Suppr超能文献

迈向心脏纤维结构的统计图谱。

Towards a statistical atlas of cardiac fiber structure.

作者信息

Peyrat Jean-Marc, Sermesant Maxime, Pennec Xavier, Delingette Hervé, Xu Chenyang, McVeigh Elliot, Ayache Nicholas

机构信息

INRIA, Asclepios Research Project, Sophia Antipolis, France.

出版信息

Med Image Comput Comput Assist Interv. 2006;9(Pt 1):297-304. doi: 10.1007/11866565_37.

Abstract

We propose here a framework to build a statistical atlas of diffusion tensors of canine hearts. The anatomical images of seven hearts are first non-rigidly registered in the same reference frame and their associated diffusion tensors are then transformed with a method that preserves the cardiac laminar sheets. In this referential frame, the mean tensor and its covariance matrix are computed based on the Log-Euclidean framework. With this method, we can produce a smooth mean tensor field that is suited for fiber tracking algorithms or the electromechanical modeling of the heart. In addition, by examining the covariance matrix at each voxel it is possible to assess the variability of the cardiac fiber directions and of the orientations of laminar sheets. The results show a strong coherence of the diffusion tensors and the fiber orientations among a population of seven normal canine hearts.

摘要

我们在此提出一个构建犬类心脏扩散张量统计图谱的框架。首先将七个心脏的解剖图像非刚性配准到同一参考坐标系中,然后使用一种保留心脏层状结构的方法对其相关的扩散张量进行变换。在这个参考坐标系中,基于对数欧几里得框架计算平均张量及其协方差矩阵。通过这种方法,我们可以生成一个适合纤维追踪算法或心脏机电建模的平滑平均张量场。此外,通过检查每个体素处的协方差矩阵,可以评估心脏纤维方向和层状结构取向的变异性。结果显示,在七个正常犬类心脏群体中,扩散张量和纤维取向具有很强的一致性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验