McIntosh Chris, Hamarneh Ghassan
Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, BC, Canada.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):808-15. doi: 10.1007/11866565_99.
Spinal cord analysis is an important problem relating to the study of various neurological diseases. We present a novel approach to spinal cord segmentation in magnetic resonance images. Our method uses 3D "deformable organisms" (DefOrg) an artificial life framework for medical image analysis that complements classical deformable models (snakes and deformable meshes) with high-level, anatomically-driven control mechanisms. The DefOrg framework allows us to model the organism's body as a growing generalized tubular spring-mass system with an adaptive and predominantly elliptical cross section, and to equip them with spinal cord specific sensory modules, behavioral routines and decision making strategies. The result is a new breed of robust DefOrgs, "spinal crawlers", that crawl along spinal cords in 3D images, accurately segmenting boundaries, and providing sophisticated, clinically-relevant structural analysis. We validate our method through the segmentation of spinal cords in clinical data and provide comparisons to other segmentation techniques.
脊髓分析是与各种神经疾病研究相关的一个重要问题。我们提出了一种用于磁共振图像中脊髓分割的新方法。我们的方法使用3D“可变形生物体”(DefOrg),这是一种用于医学图像分析的人工生命框架,它通过高级的、解剖学驱动的控制机制对经典可变形模型(蛇形模型和可变形网格)进行补充。DefOrg框架使我们能够将生物体的身体建模为一个不断生长的广义管状弹簧质量系统,其具有自适应且主要为椭圆形的横截面,并为它们配备脊髓特定的感觉模块、行为程序和决策策略。结果是产生了一种新型的强大的DefOrg,即“脊髓爬虫”,它在3D图像中沿着脊髓爬行,准确分割边界,并提供复杂的、与临床相关的结构分析。我们通过对临床数据中的脊髓进行分割来验证我们的方法,并与其他分割技术进行比较。