Pattichis Marios S, Bovik Alan C
Department of Electrical Engineering and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA.
IEEE Trans Pattern Anal Mach Intell. 2007 May;29(5):753-66. doi: 10.1109/TPAMI.2007.1051.
We develop a mathematical framework for quantifying and understanding multidimensional frequency modulations in digital images. We begin with the widely accepted definition of the instantaneous frequency vector (IF) as the gradient of the phase and define the instantaneous frequency gradient tensor (IFGT) as the tensor of component derivatives of the IF vector. Frequency modulation bounds are derived and interpreted in terms of the eigendecomposition of the IFGT. Using the IFGT, we derive the ordinary differential equations (ODEs) that describe image flowlines. We study the diagonalization of the ODEs of multidimensional frequency modulation on the IFGT eigenvector coordinate system and suggest that separable transforms can be computed along these coordinates. We illustrate these new methods of image pattern analysis on textured and fingerprint images. We envision that this work will find value in applications involving the analysis of image textures that are nonstationary yet exhibit local regularity. Examples of such textures abound in nature.
我们开发了一个数学框架,用于量化和理解数字图像中的多维频率调制。我们从广泛接受的瞬时频率向量(IF)定义开始,即相位的梯度,并将瞬时频率梯度张量(IFGT)定义为IF向量的分量导数张量。根据IFGT的特征分解推导并解释了频率调制边界。利用IFGT,我们推导了描述图像流线的常微分方程(ODE)。我们研究了在IFGT特征向量坐标系上多维频率调制的ODE的对角化,并提出可以沿着这些坐标计算可分离变换。我们在纹理图像和指纹图像上说明了这些新的图像模式分析方法。我们设想这项工作将在涉及分析非平稳但表现出局部规律性的图像纹理的应用中找到价值。自然界中这类纹理的例子比比皆是。