Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87109 USA.
IEEE Trans Med Imaging. 2010 Feb;29(2):502-12. doi: 10.1109/TMI.2009.2037146.
In this paper, we propose the use of multiscale amplitude-modulation-frequency-modulation (AM-FM) methods for discriminating between normal and pathological retinal images. The method presented in this paper is tested using standard images from the early treatment diabetic retinopathy study. We use 120 regions of 40 x 40 pixels containing four types of lesions commonly associated with diabetic retinopathy (DR) and two types of normal retinal regions that were manually selected by a trained analyst. The region types included microaneurysms, exudates, neovascularization on the retina, hemorrhages, normal retinal background, and normal vessels patterns. The cumulative distribution functions of the instantaneous amplitude, the instantaneous frequency magnitude, and the relative instantaneous frequency angle from multiple scales are used as texture feature vectors. We use distance metrics between the extracted feature vectors to measure interstructure similarity. Our results demonstrate a statistical differentiation of normal retinal structures and pathological lesions based on AM-FM features. We further demonstrate our AM-FM methodology by applying it to classification of retinal images from the MESSIDOR database. Overall, the proposed methodology shows significant capability for use in automatic DR screening.
在本文中,我们提出了使用多尺度调幅-调频(AM-FM)方法来区分正常和病理性视网膜图像。本文提出的方法使用早期糖尿病性视网膜病变研究中的标准图像进行测试。我们使用了 120 个 40x40 像素的区域,其中包含了四种常见的与糖尿病性视网膜病变(DR)相关的病变类型和两种由受过训练的分析师手动选择的正常视网膜区域类型。这些区域类型包括微动脉瘤、渗出物、视网膜新生血管、出血、正常视网膜背景和正常血管模式。从多个尺度提取的瞬时幅度、瞬时频率幅度和相对瞬时频率角度的累积分布函数作为纹理特征向量。我们使用提取特征向量之间的距离度量来测量结构间的相似性。我们的结果基于 AM-FM 特征证明了正常视网膜结构和病理性病变的统计学区分。我们进一步通过将我们的 AM-FM 方法应用于 MESSIDOR 数据库中的视网膜图像分类来证明其有效性。总的来说,所提出的方法在自动 DR 筛查中具有显著的应用能力。