Suppr超能文献

基于拉东变换和线性判别分析的步态识别

Gait recognition using radon transform and linear discriminant analysis.

作者信息

Boulgouris Nikolaos V, Chi Zhiwei X

机构信息

Department of Electronic Engineering, Division of Engineering, King's College London, WC2R 2LS London, U.K.

出版信息

IEEE Trans Image Process. 2007 Mar;16(3):731-40. doi: 10.1109/tip.2007.891157.

Abstract

A new feature extraction process is proposed for gait representation and recognition. The new system is based on the Radon transform of binary silhouettes. For each gait sequence, the transformed silhouettes are used for the computation of a template. The set of all templates is subsequently subjected to linear discriminant analysis and subspace projection. In this manner, each gait sequence is described using a low-dimensional feature vector consisting of selected Radon template coefficients. Given a test feature vector, gait recognition and verification is achieved by appropriately comparing it to feature vectors in a reference gait database. By using the new system on the Gait Challenge database, very considerable improvements in recognition performance are seen in comparison to state-of-the-art methods for gait recognition.

摘要

提出了一种用于步态表示和识别的新特征提取方法。新系统基于二值轮廓的Radon变换。对于每个步态序列,变换后的轮廓用于计算模板。随后,对所有模板集进行线性判别分析和子空间投影。通过这种方式,每个步态序列都用一个由选定的Radon模板系数组成的低维特征向量来描述。给定一个测试特征向量,通过将其与参考步态数据库中的特征向量进行适当比较来实现步态识别和验证。通过在步态挑战数据库上使用新系统,与当前最先进的步态识别方法相比,识别性能有了非常显著的提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验