Nadler Walter, Hansmann Ulrich H E
Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931-1295, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Feb;75(2 Pt 2):026109. doi: 10.1103/PhysRevE.75.026109. Epub 2007 Feb 27.
From the underlying master equations we derive one-dimensional stochastic processes that describe generalized ensemble simulations as well as tempering (simulated and parallel) simulations. The representations obtained are either in the form of a one-dimensional Fokker-Planck equation or a hopping process on a one-dimensional chain. In particular, we discuss the conditions under which these representations are valid approximate Markovian descriptions of the random walk in order parameter or control parameter space. They allow a unified discussion of the stationary distribution on, as well as of the stationary flow across, each space. We demonstrate that optimizing the flow is equivalent to minimizing the first passage time for crossing the space and discuss the consequences of our results for optimizing simulations. Finally, we point out the limitations of these representations under conditions of broken ergodicity.
从基础的主方程出发,我们推导出一维随机过程,这些过程描述了广义系综模拟以及回火(模拟和并行)模拟。所得到的表示形式要么是一维福克 - 普朗克方程的形式,要么是一维链上的跳跃过程。特别地,我们讨论了这些表示在何种条件下是序参量或控制参量空间中随机游走的有效近似马尔可夫描述。它们允许对每个空间上的平稳分布以及跨越每个空间的平稳流进行统一讨论。我们证明优化流等同于最小化穿越该空间的首次通过时间,并讨论我们的结果对优化模拟的影响。最后,我们指出在遍历性破坏条件下这些表示的局限性。