Bender Carl M, Brody Dorje C, Jones Hugh F, Meister Bernhard K
Physics Department, Washington University, St. Louis, Missouri 63130, USA
Phys Rev Lett. 2007 Jan 26;98(4):040403. doi: 10.1103/PhysRevLett.98.040403. Epub 2007 Jan 24.
Given an initial quantum state |psi(I)> and a final quantum state |psi(F)>, there exist Hamiltonians H under which |psi(I)> evolves into |psi(F)>. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time tau? For Hermitian Hamiltonians tau has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, tau can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from |psi(I)> to |psi(F)> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing.
给定一个初始量子态|ψ(I)>和一个最终量子态|ψ(F)>,存在一些哈密顿量H,在其作用下|ψ(I)>会演化为|ψ(F)>。考虑以下量子最速降线问题:在H的最大和最小本征值之差保持固定的约束条件下,哪个H能在最短时间τ内实现这种变换?对于厄米哈密顿量,τ有一个非零的下限。然而,在满足相同能量约束的非厄米PT对称哈密顿量中,τ可以在不违反时间 - 能量不确定性原理的情况下被任意减小。这是因为对于这样的哈密顿量,从|ψ(I)>到|ψ(F)>的路径可以变短。这里描述的机制类似于广义相对论中的情况,即如果两个时空点由一个虫洞连接,它们之间的距离可以变小。这个结果可能在量子计算中有应用。