Suppr超能文献

一种用于在监测条件下进行光镜和共聚焦显微镜观察的新型温控室的设计与构建:植物样本的生物学应用

Design and construction of a new temperature-controlled chamber for light and confocal microscopy under monitored conditions: biological application for plant samples.

作者信息

Buchner O, Lütz C, Holzinger A

机构信息

University of Innsbruck, Institute of Botany, Sternwartestrasse 15, A-6020 Innsbruck, Austria.

出版信息

J Microsc. 2007 Feb;225(Pt 2):183-91. doi: 10.1111/j.1365-2818.2007.01730.x.

Abstract

A new light microscope-temperature-controlled chamber (LM-TCC) has been constructed. The special feature of the light microscope-temperature-controlled chamber is the Peltier-element temperature control of a specimen holder for biological samples, with a volume capacity of 1 mL. This system has marked advantages when compared to other approaches for temperature-controlled microscopy. It works in a temperature range of -10 degrees C to +95 degrees C with an accuracy of +/-0.1 degrees C in the stationary phase. The light microscope-temperature-controlled chamber allows rapid temperature shift rates. A maximum heating rate of 12.9 degrees C min(-1) and a maximum cooling rate of 6.0 degrees C min(-1) are achieved with minimized overshoots (<or=1.9 degrees C). This machinery operates at low cost and external coolants are not required. Especially with samples absorbing irradiation strongly, temperature control during microscopy is necessary to avoid overheating of samples. For example, leaf segments of Ficaria verna exposed to 4500 micromol photons m(-2) s(-1) in a standard microscopic preparation show a temperature increase (deltaT) of 18.0 degrees C, whereas in the light microscope-temperature-controlled chamber this is reduced to 4 degrees C. The kinetics of microscope-light induced deltaT are described and infrared thermography demonstrates the dissipation of the temperature. Chloroplasts of the cold adapted plant Ranunculus glacialis show the tendency to form stroma-filled protrusions in relation to the exposure temperature. The relative number of chloroplasts with protrusions is reduced at 5 degrees C when compared to 25 degrees C. This effect is reversible. The new light microscope-temperature-controlled chamber will be useful in a wide range of biological applications where a rapid change of temperature during microscopic observations is necessary or has to be avoided allowing a simulation of ecologically relevant temperature scenarios.

摘要

一种新型的光学显微镜 - 温度控制腔室(LM - TCC)已被构建。该光学显微镜 - 温度控制腔室的特殊之处在于其采用珀尔帖元件对生物样品的样品架进行温度控制,样品架的容积为1 mL。与其他用于温度控制显微镜的方法相比,该系统具有显著优势。它在 - 10℃至 + 95℃的温度范围内工作,在稳定阶段的精度为±0.1℃。该光学显微镜 - 温度控制腔室允许快速的温度变化率。实现了最大加热速率为12.9℃ min⁻¹和最大冷却速率为6.0℃ min⁻¹,且过冲最小化(≤1.9℃)。该设备运行成本低,无需外部冷却剂。特别是对于强烈吸收辐射的样品,在显微镜观察期间进行温度控制对于避免样品过热是必要的。例如,在标准显微镜制备中,小斑叶堇菜的叶片片段暴露于4500 μmol光子 m⁻² s⁻¹时,温度升高(ΔT)为18.0℃,而在光学显微镜 - 温度控制腔室中,这一温度升高降低至4℃。描述了显微镜光诱导的ΔT的动力学,并且红外热成像显示了温度的消散。适应寒冷环境的冰川毛茛的叶绿体显示出相对于暴露温度形成充满基质的突起的趋势。与25℃相比,在5℃时具有突起的叶绿体的相对数量减少。这种效应是可逆的。这种新型的光学显微镜 - 温度控制腔室将在广泛的生物学应用中有用,在这些应用中,在显微镜观察期间需要或必须避免温度的快速变化,从而允许模拟与生态相关的温度场景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验