Toner Andrew, Matthes Jochen, Gründemann Stephan, Limbach Hans-Heinrich, Chaudret Bruno, Clot Eric, Sabo-Etienne Sylviane
Laboratoire de Chimie de Coordination du Centre National de la Recherche Scientifique, Associé à l'Université Paul Sabatier, 205 route de Narbonne, 31077 Toulouse Cedex 04, France.
Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):6945-50. doi: 10.1073/pnas.0608979104. Epub 2007 Mar 13.
Protonation of the ortho-metalated ruthenium complexes RuH(H(2))(X)(P(i)Pr(3))(2) [X = 2-phenylpyridine (ph-py) (1), benzoquinoline (bq) (2)] and RuH(CO)(ph-py)(P(i)Pr(3))(2) (3) with H(OEt(2))(2)BAr'(4) (BAr'(4) = [(3,5-(CF(3))(2)C(6)H(3))(4)B]) under H(2) atmosphere yields the corresponding cationic hydrido dihydrogen ruthenium complexes [RuH(H(2))(H-X)(P(i)Pr(3))(2)][BAr'(4)] [X = phenylpyridine (ph-py) (1-H); benzoquinoline (bq) (2-H)] and the carbonyl complex [RuH(CO)(H-ph-py)(P(i)Pr(3))(2)][BAr'(4)] (3-H). The complexes accommodate an agostic C H interaction characterized by NMR and in the case of 1-H by x-ray diffraction. Fluxional processes involve the hydride and dihydrogen ligands in 1-H and 2-H and the rotation of the phenyl ring displaying the agostic interaction in 1-H and 3-H. NMR studies (lineshape analysis of the temperature-dependent NMR spectra) and density functional theory calculations are used to understand these processes. Under vacuum, one equivalent of dihydrogen can be removed from 1-H and 2-H leading to the formation of the corresponding cationic ortho-metalated complexes Ru(H(2))(THF)(X)(P(i)Pr(3))(2) [X = ph-py (1-THF), bq (2-THF)]. The reaction is fully reversible. Density functional theory calculations and NMR data give information about the reversible mechanism of C H activation in these ortho-metalated ruthenium complexes. Our study highlights the subtle interplay between key ligands such as hydrides, sigma-dihydrogen, and agostic bonds, in C H activation processes.
在氢气氛围下,邻位金属化钌配合物RuH(H₂)(X)(P(iPr₃))₂[X = 2-苯基吡啶(ph-py)(1)、苯并喹啉(bq)(2)]和RuH(CO)(ph-py)(P(iPr₃))₂(3)与[H(OEt₂)₂][BAr′₄](BAr′₄ = [(3,5-(CF₃)₂C₆H₃)₄B])发生质子化反应,生成相应的阳离子氢化二氢钌配合物[RuH(H₂)(H-X)(P(iPr₃))₂][BAr′₄][X = 苯基吡啶(ph-py)(1-H);苯并喹啉(bq)(2-H)]以及羰基配合物[RuH(CO)(H-ph-py)(P(iPr₃))₂]BAr′₄。这些配合物存在一种以核磁共振表征的螯合C-H相互作用,对于1-H而言,还通过X射线衍射得到证实。动态过程涉及1-H和2-H中的氢化物和二氢配体,以及1-H和3-H中显示螯合相互作用的苯环的旋转。利用核磁共振研究(对温度依赖的核磁共振谱进行线形分析)和密度泛函理论计算来理解这些过程。在真空条件下,1-H和2-H可脱去一当量的二氢,导致形成相应的阳离子邻位金属化配合物[Ru(H₂)(THF)(X)(P(iPr₃))₂][X = ph-py(1-THF),bq(2-THF)]。该反应是完全可逆的。密度泛函理论计算和核磁共振数据提供了有关这些邻位金属化钌配合物中C-H活化可逆机理的信息。我们的研究突出了诸如氢化物、σ-二氢和螯合键等关键配体在C-H活化过程中的微妙相互作用。