Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892.
Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892;
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2103990118.
DNA synthesis by polymerases is essential for life. Deprotonation of the nucleophile 3'-OH is thought to be the obligatory first step in the DNA synthesis reaction. We have examined each entity surrounding the nucleophile 3'-OH in the reaction catalyzed by human DNA polymerase (Pol) η and delineated the deprotonation process by combining mutagenesis with steady-state kinetics, high-resolution structures of in crystallo reactions, and molecular dynamics simulations. The conserved S113 residue, which forms a hydrogen bond with the primer 3'-OH in the ground state, stabilizes the primer end in the active site. Mutation of S113 to alanine destabilizes primer binding and reduces the catalytic efficiency. Displacement of a water molecule that is hydrogen bonded to the 3'-OH using the 2'-OH of a ribonucleotide or 2'-F has little effect on catalysis. Moreover, combining the S113A mutation with 2'-F replacement, which removes two potential hydrogen acceptors of the 3'-OH, does not reduce the catalytic efficiency. We conclude that the proton can leave the O3' via alternative paths, supporting the hypothesis that binding of the third Mg initiates the reaction by breaking the α-β phosphodiester bond of an incoming deoxyribonucleoside triphosphate (dNTP).
聚合酶的 DNA 合成对于生命至关重要。亲核试剂 3'-OH 的去质子化被认为是 DNA 合成反应的必需的第一步。我们研究了人类 DNA 聚合酶(Pol)η催化反应中围绕亲核试剂 3'-OH 的每个实体,并通过突变与稳态动力学、高分辨率晶体反应结构和分子动力学模拟相结合,描绘了去质子化过程。保守的 S113 残基与基态中的引物 3'-OH 形成氢键,稳定活性位点中的引物末端。将 S113 突变为丙氨酸会破坏引物结合并降低催化效率。用核苷酸的 2'-OH 或 2'-F 取代与 3'-OH 氢键结合的水分子对催化作用的影响很小。此外,将 S113A 突变与 2'-F 取代相结合,消除了 3'-OH 的两个潜在氢键供体,并没有降低催化效率。我们得出结论,质子可以通过替代途径离开 O3',这支持了这样的假设,即第三个 Mg 的结合通过打破进入的脱氧核糖核苷酸三磷酸(dNTP)的α-β 磷酸二酯键来启动反应。