Suppr超能文献

界面塑性控制着纳米结构金属中的应变速率敏感性和延展性。

Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals.

作者信息

Zhu Ting, Li Ju, Samanta Amit, Kim Hyoung Gyu, Suresh Subra

机构信息

Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3031-6. doi: 10.1073/pnas.0611097104. Epub 2007 Feb 21.

Abstract

Nano-twinned copper exhibits an unusual combination of ultrahigh strength and high ductility, along with increased strain-rate sensitivity. We develop a mechanistic framework for predicting the rate sensitivity and elucidating the origin of ductility in terms of the interactions of dislocations with interfaces. Using atomistic reaction pathway calculations, we show that slip transfer reactions mediated by twin boundary are the rate-controlling mechanisms of plastic flow. We attribute the relatively high ductility of nano-twinned copper to the hardening of twin boundaries as they gradually lose coherency during plastic deformation. These findings provide insights into the possible means of optimizing strength and ductility through interfacial engineering.

摘要

纳米孪晶铜展现出超高强度与高延展性的异常组合,同时应变率敏感性也有所增加。我们构建了一个机理框架,用于预测速率敏感性并从位错与界面的相互作用角度阐明延展性的起源。通过原子反应路径计算,我们表明由孪晶界介导的滑移转移反应是塑性流动的速率控制机制。我们将纳米孪晶铜相对较高的延展性归因于孪晶界在塑性变形过程中逐渐失去共格性时的强化作用。这些发现为通过界面工程优化强度和延展性的可能方法提供了见解。

相似文献

3
Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.五重孪晶 Ag 纳米线的应变硬化和尺寸效应。
Nano Lett. 2015 Jun 10;15(6):4037-44. doi: 10.1021/acs.nanolett.5b01015. Epub 2015 May 15.
6
Sliding of coherent twin boundaries.相干孪晶界的滑动。
Nat Commun. 2017 Oct 24;8(1):1108. doi: 10.1038/s41467-017-01234-8.
7
Deformation mechanisms in nanotwinned metal nanopillars.纳米孪晶金属纳米柱中的变形机制。
Nat Nanotechnol. 2012 Sep;7(9):594-601. doi: 10.1038/nnano.2012.116. Epub 2012 Jul 15.
10
Revealing the maximum strength in nanotwinned copper.揭示纳米孪晶铜的最大强度。
Science. 2009 Jan 30;323(5914):607-10. doi: 10.1126/science.1167641.

引用本文的文献

1
3
Allotropy in ultra high strength materials.超高强度材料中的同素异形现象。
Nat Commun. 2022 Jun 9;13(1):3326. doi: 10.1038/s41467-022-30845-z.
7
Origin of micrometer-scale dislocation motion during hydrogen desorption.氢解吸过程中微米级位错运动的起源。
Sci Adv. 2020 Jun 5;6(23):eaaz1187. doi: 10.1126/sciadv.aaz1187. eCollection 2020 Jun.
9
Hydrogen embrittlement in metallic nanowires.金属纳米线中的氢脆现象。
Nat Commun. 2019 May 1;10(1):2004. doi: 10.1038/s41467-019-10035-0.
10
Intragranular Dispersion of Carbon Nanotubes Comprehensively Improves Aluminum Alloys.碳纳米管的晶内分散全面改善铝合金。
Adv Sci (Weinh). 2018 Apr 19;5(7):1800115. doi: 10.1002/advs.201800115. eCollection 2018 Jul.

本文引用的文献

1
2
Grain boundary-mediated plasticity in nanocrystalline nickel.纳米晶镍中晶界介导的塑性
Science. 2004 Jul 30;305(5684):654-7. doi: 10.1126/science.1098741.
3
4
Ultrahigh strength and high electrical conductivity in copper.铜中的超高强度和高导电性。
Science. 2004 Apr 16;304(5669):422-6. doi: 10.1126/science.1092905. Epub 2004 Mar 18.
6
A maximum in the strength of nanocrystalline copper.纳米晶铜强度的最大值。
Science. 2003 Sep 5;301(5638):1357-9. doi: 10.1126/science.1086636.
7
8
Polycrystalline materials. Grain boundaries and dislocations.多晶材料。晶界与位错。
Science. 2002 Apr 5;296(5565):66-7. doi: 10.1126/science.1071040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验