Suppr超能文献

膜中突触小泡蛋白调节的决定因素。

Determinants of synaptobrevin regulation in membranes.

作者信息

Siddiqui Tabrez J, Vites Olga, Stein Alexander, Heintzmann Rainer, Jahn Reinhard, Fasshauer Dirk

机构信息

Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany.

出版信息

Mol Biol Cell. 2007 Jun;18(6):2037-46. doi: 10.1091/mbc.e07-01-0049. Epub 2007 Mar 14.

Abstract

Neuronal exocytosis is driven by the formation of SNARE complexes between synaptobrevin 2 on synaptic vesicles and SNAP-25/syntaxin 1 on the plasma membrane. It has remained controversial, however, whether SNAREs are constitutively active or whether they are down-regulated until fusion is triggered. We now show that synaptobrevin in proteoliposomes as well as in purified synaptic vesicles is constitutively active. Potential regulators such as calmodulin or synaptophysin do not affect SNARE activity. Substitution or deletion of residues in the linker connecting the SNARE motif and transmembrane region did not alter the kinetics of SNARE complex assembly or of SNARE-mediated fusion of liposomes. Remarkably, deletion of C-terminal residues of the SNARE motif strongly reduced fusion activity, although the overall stability of the complexes was not affected. We conclude that although complete zippering of the SNARE complex is essential for membrane fusion, the structure of the adjacent linker domain is less critical, suggesting that complete SNARE complex assembly not only connects membranes but also drives fusion.

摘要

神经元胞吐作用是由突触小泡上的突触融合蛋白2与质膜上的SNAP - 25/ syntaxin 1之间形成SNARE复合体所驱动的。然而,SNAREs是组成性激活的,还是在融合触发之前被下调,这一点仍然存在争议。我们现在表明,在蛋白脂质体以及纯化的突触小泡中的突触融合蛋白是组成性激活的。诸如钙调蛋白或突触素等潜在调节因子不会影响SNARE活性。连接SNARE基序和跨膜区域的接头中残基的取代或缺失不会改变SNARE复合体组装或SNARE介导的脂质体融合的动力学。值得注意的是,SNARE基序C末端残基的缺失显著降低了融合活性,尽管复合体的整体稳定性没有受到影响。我们得出结论,尽管SNARE复合体的完全拉链式结构对于膜融合至关重要,但相邻接头结构域的结构不太关键,这表明完整的SNARE复合体组装不仅连接膜,还驱动融合。

相似文献

1
Determinants of synaptobrevin regulation in membranes.
Mol Biol Cell. 2007 Jun;18(6):2037-46. doi: 10.1091/mbc.e07-01-0049. Epub 2007 Mar 14.
2
Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion.
Nature. 2002 Feb 7;415(6872):646-50. doi: 10.1038/415646a.
3
Evidence for SNARE zippering during Ca2+-triggered exocytosis in PC12 cells.
Neuropharmacology. 2003 Nov;45(6):777-86. doi: 10.1016/s0028-3908(03)00318-6.
5
Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis.
Neuron. 2009 Jun 11;62(5):683-94. doi: 10.1016/j.neuron.2009.04.024.
6
Synaptic vesicles are constitutively active fusion machines that function independently of Ca2+.
Curr Biol. 2008 May 20;18(10):715-722. doi: 10.1016/j.cub.2008.04.069.
7
Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes.
PLoS Biol. 2006 Oct;4(10):e330. doi: 10.1371/journal.pbio.0040330.
8
The Transmembrane Domain of Synaptobrevin Influences Neurotransmitter Flux through Synaptic Fusion Pores.
J Neurosci. 2018 Aug 8;38(32):7179-7191. doi: 10.1523/JNEUROSCI.0721-18.2018. Epub 2018 Jul 16.
9
Single vesicle millisecond fusion kinetics reveals number of SNARE complexes optimal for fast SNARE-mediated membrane fusion.
J Biol Chem. 2009 Nov 13;284(46):32158-66. doi: 10.1074/jbc.M109.047381. Epub 2009 Sep 15.

引用本文的文献

1
Intermediate steps in the formation of neuronal SNARE complexes.
J Biol Chem. 2024 Aug;300(8):107591. doi: 10.1016/j.jbc.2024.107591. Epub 2024 Jul 19.
2
SNARE Regulatory Proteins in Synaptic Vesicle Fusion and Recycling.
Front Mol Neurosci. 2021 Aug 6;14:733138. doi: 10.3389/fnmol.2021.733138. eCollection 2021.
3
Tight docking of membranes before fusion represents a metastable state with unique properties.
Nat Commun. 2021 Jun 14;12(1):3606. doi: 10.1038/s41467-021-23722-8.
4
Differential Diffusional Properties in Loose and Tight Docking Prior to Membrane Fusion.
Biophys J. 2020 Dec 15;119(12):2431-2439. doi: 10.1016/j.bpj.2020.10.033. Epub 2020 Nov 13.
7
Arrest of -SNARE zippering uncovers loosely and tightly docked intermediates in membrane fusion.
J Biol Chem. 2018 Jun 1;293(22):8645-8655. doi: 10.1074/jbc.RA118.003313. Epub 2018 Apr 17.
8
Safeguards of Neurotransmission: Endocytic Adaptors as Regulators of Synaptic Vesicle Composition and Function.
Front Cell Neurosci. 2017 Oct 11;11:320. doi: 10.3389/fncel.2017.00320. eCollection 2017.
9
v-SNARE function in chromaffin cells.
Pflugers Arch. 2018 Jan;470(1):169-180. doi: 10.1007/s00424-017-2066-z. Epub 2017 Sep 8.

本文引用的文献

1
Molecular anatomy of a trafficking organelle.
Cell. 2006 Nov 17;127(4):831-46. doi: 10.1016/j.cell.2006.10.030.
2
SNAREs--engines for membrane fusion.
Nat Rev Mol Cell Biol. 2006 Sep;7(9):631-43. doi: 10.1038/nrm2002. Epub 2006 Aug 16.
3
N- to C-terminal SNARE complex assembly promotes rapid membrane fusion.
Science. 2006 Aug 4;313(5787):673-6. doi: 10.1126/science.1129486.
4
Structural determinants of synaptobrevin 2 function in synaptic vesicle fusion.
J Neurosci. 2006 Jun 21;26(25):6668-76. doi: 10.1523/JNEUROSCI.5272-05.2006.
5
Long-term potentiation of neuron-glia synapses mediated by Ca2+-permeable AMPA receptors.
Science. 2006 Jun 9;312(5779):1533-7. doi: 10.1126/science.1124669.
6
Conformation of the synaptobrevin transmembrane domain.
Proc Natl Acad Sci U S A. 2006 May 30;103(22):8378-83. doi: 10.1073/pnas.0602644103. Epub 2006 May 18.
7
Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release.
Trends Cell Biol. 2006 Jul;16(7):339-50. doi: 10.1016/j.tcb.2006.04.006. Epub 2006 May 12.
8
Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models.
Nat Neurosci. 2006 Feb;9(2):251-9. doi: 10.1038/nn1632. Epub 2006 Jan 15.
9
SNARE complexes and neuroexocytosis: how many, how close?
Trends Biochem Sci. 2005 Jul;30(7):367-72. doi: 10.1016/j.tibs.2005.05.002.
10
The C-terminal transmembrane region of synaptobrevin binds synaptophysin from adult synaptic vesicles.
Eur J Cell Biol. 2005 Apr;84(4):467-75. doi: 10.1016/j.ejcb.2004.11.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验