Molecular Mechanism of Exocytosis, Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
J Cell Biol. 2010 Feb 8;188(3):401-13. doi: 10.1083/jcb.200907018.
Rapid neurotransmitter release depends on the ability to arrest the SNAP receptor (SNARE)-dependent exocytosis pathway at an intermediate "cocked" state, from which fusion can be triggered by Ca(2+). It is not clear whether this state includes assembly of synaptobrevin (the vesicle membrane SNARE) to the syntaxin-SNAP-25 (target membrane SNAREs) acceptor complex or whether the reaction is arrested upstream of that step. In this study, by a combination of in vitro biophysical measurements and time-resolved exocytosis measurements in adrenal chromaffin cells, we find that mutations of the N-terminal interaction layers of the SNARE bundle inhibit assembly in vitro and vesicle priming in vivo without detectable changes in triggering speed or fusion pore properties. In contrast, mutations in the last C-terminal layer decrease triggering speed and fusion pore duration. Between the two domains, we identify a region exquisitely sensitive to mutation, possibly constituting a switch. Our data are consistent with a model in which the N terminus of the SNARE complex assembles during vesicle priming, followed by Ca(2+)-triggered C-terminal assembly and membrane fusion.
快速神经递质释放取决于在中间的“上膛”状态下阻止 SNAP 受体(SNARE)依赖性胞吐途径的能力,在这种状态下,融合可以被 Ca(2+) 触发。目前尚不清楚该状态是否包括突触融合蛋白(囊泡膜 SNARE)与突触融合蛋白 25(靶膜 SNARE)接受复合物的组装,或者该反应是否在上游步骤之前被阻止。在这项研究中,通过体外生物物理测量和肾上腺嗜铬细胞中时间分辨胞吐测量的组合,我们发现 SNARE 束的 N 端相互作用层的突变抑制了体外组装和体内囊泡引发,而没有检测到触发速度或融合孔特性的变化。相比之下,C 端最后一层的突变会降低触发速度和融合孔持续时间。在这两个结构域之间,我们确定了一个对突变极其敏感的区域,可能构成一个开关。我们的数据与这样一个模型一致,即 SNARE 复合物的 N 端在囊泡引发过程中组装,随后是 Ca(2+) 触发的 C 端组装和膜融合。