Hornbrook Mark C, Whitlock Evelyn P, Berg Cynthia J, Callaghan William M, Bachman Donald J, Gold Rachel, Bruce F Carol, Dietz Patricia M, Williams Selvi B
The Center for Health Research, Northwest/Hawaii/Southeast, 3800 N. Interstate Avenue, Portland, OR 97227-1110, USA.
Health Serv Res. 2007 Apr;42(2):908-27. doi: 10.1111/j.1475-6773.2006.00635.x.
To develop and validate a software algorithm to detect pregnancy episodes and maternal morbidities using automated data.
DATA SOURCES/STUDY SETTING: Automated records from a large integrated health care delivery system (IHDS), 1998-2001.
Through complex linkages of multiple automated information sources, the algorithm estimated pregnancy histories. We evaluated the algorithm's accuracy by comparing selected elements of the pregnancy history obtained by the algorithm with the same elements manually abstracted from medical records by trained research staff.
DATA COLLECTION/EXTRACTION METHODS: The algorithm searched for potential pregnancy indicators within diagnosis and procedure codes, as well as laboratory tests, pharmacy dispensings, and imaging procedures associated with pregnancy.
Among 32,847 women with potential pregnancy indicators, we identified 24,680 pregnancies occuring to 21,001 women. Percent agreement between the algorithm and medical records review on pregnancy outcome, gestational age, and pregnancy outcome date ranged from 91 percent to 98 percent. The validation results were used to refine the algorithm.
This pregnancy episode grouper algorithm takes advantage of databases readily available in IHDS, and has important applications for health system management and clinical care. It can be used in other settings for ongoing surveillance and research on pregnancy outcomes, pregnancy-related morbidities, costs, and care patterns.
开发并验证一种利用自动化数据检测妊娠事件和孕产妇发病情况的软件算法。
数据来源/研究背景:来自一个大型综合医疗保健服务系统(IHDS)1998 - 2001年的自动化记录。
通过多个自动化信息源的复杂链接,该算法估算妊娠史。我们通过将算法得出的妊娠史的选定要素与经过培训的研究人员从医疗记录中手动提取的相同要素进行比较,来评估算法的准确性。
数据收集/提取方法:该算法在诊断和程序代码以及与妊娠相关的实验室检查、药房配药和影像检查中搜索潜在的妊娠指标。
在32847名有潜在妊娠指标的女性中,我们识别出21001名女性发生的24680次妊娠。算法与医疗记录审查在妊娠结局、孕周和妊娠结局日期方面的一致性百分比在91%至98%之间。验证结果用于完善该算法。
这种妊娠事件分组算法利用了IHDS中现成的数据库,对卫生系统管理和临床护理具有重要应用价值。它可用于其他环境,以持续监测和研究妊娠结局、妊娠相关发病情况、成本和护理模式。