Poplawski Karla, Gould Timothy, Setton Eleanor, Allen Ryan, Su Jason, Larson Timothy, Henderson Sarah, Brauer Michael, Hystad Perry, Lightowlers Christy, Keller Peter, Cohen Marty, Silva Carlos, Buzzelli Mike
Spatial Sciences Research Laboratory, Department of Geography, University of Victoria, Victoria, British Columbia, Canada.
J Expo Sci Environ Epidemiol. 2009 Jan;19(1):107-17. doi: 10.1038/jes.2008.15. Epub 2008 Apr 9.
Land use regression (LUR) is a method for predicting the spatial distribution of traffic-related air pollution. To facilitate risk and exposure assessment, and the design of future monitoring networks and sampling campaigns, we sought to determine the extent to which LUR can be used to predict spatial patterns in air pollution in the absence of dedicated measurements. We evaluate the transferability of one LUR model to two other geographically comparable areas with similar climates and pollution types. The source model, developed in 2003 to estimate ambient nitrogen dioxide (NO(2)) concentrations in Vancouver (BC, Canada) was applied to Victoria (BC, Canada) and Seattle (WA, USA). Model estimates were compared with measurements made with Ogawa passive samplers in both cities. As part of this study, 42 locations were sampled in Victoria for a 2-week period in June 2006. Data obtained for Seattle were collected for a different project at 26 locations in March 2005. We used simple linear regression to evaluate the fit of the source model under three scenarios: (1) using the same variables and coefficients as the source model; (2) using the same variables as the source model, but calculating new coefficients for local calibration; and (3) developing site-specific equations with new variables and coefficients. In Scenario 1, we found that the source model had a better fit in Victoria (R(2)=0.51) than in Seattle (R(2)=0.33). Scenario 2 produced improved R(2)-values in both cities (Victoria=0.58, Seattle=0.65), with further improvement achieved under Scenario 3 (Victoria=0.61, Seattle=0.72). Although it is possible to transfer LUR models between geographically similar cities, success may depend on the between-city consistency of the input data. Modest field sampling campaigns for location-specific model calibration can help to produce transfer models that are equally as predictive as their sources.
土地利用回归(LUR)是一种预测与交通相关的空气污染空间分布的方法。为了促进风险和暴露评估以及未来监测网络和采样活动的设计,我们试图确定在没有专门测量的情况下,LUR可用于预测空气污染空间模式的程度。我们评估了一个LUR模型对另外两个气候和污染类型相似的地理可比区域的可转移性。2003年开发的用于估计加拿大不列颠哥伦比亚省温哥华市环境二氧化氮(NO₂)浓度的源模型被应用于加拿大不列颠哥伦比亚省维多利亚市和美国华盛顿州西雅图市。将模型估计值与两个城市中使用小川被动采样器进行的测量值进行了比较。作为本研究的一部分,2006年6月在维多利亚市的42个地点进行了为期两周的采样。西雅图市的数据是在2005年3月为另一个项目在26个地点收集的。我们使用简单线性回归在三种情况下评估源模型的拟合度:(1)使用与源模型相同的变量和系数;(2)使用与源模型相同的变量,但计算新的系数进行局部校准;(3)使用新的变量和系数开发特定地点的方程。在情况1中,我们发现源模型在维多利亚市(R² = 0.51)比在西雅图市(R² = 0.33)拟合得更好。情况2在两个城市都产生了更高的R²值(维多利亚市 = 0.58,西雅图市 = 0.65),在情况3下进一步改善(维多利亚市 = 0.61,西雅图市 = 0.72)。虽然有可能在地理相似的城市之间转移LUR模型,但成功可能取决于输入数据在城市之间的一致性。针对特定地点的模型校准进行适度的现场采样活动有助于生成与源模型具有同等预测能力的转移模型。