Suppr超能文献

Dual-field and flow-programmed lift hyperlayer field-flow fractionation.

作者信息

Ratanathanawongs S K, Giddings J C

机构信息

Department of Chemistry, University of Utah, Salt Lake City 84112.

出版信息

Anal Chem. 1992 Jan 1;64(1):6-15. doi: 10.1021/ac00025a003.

Abstract

Field and flow programming and their combination, dual programming, are shown to extend the particle size range to which a single flow/hyperlayer field-flow fractionation (FFF) run is applicable to approximately 1-50 microns. The rationale for programming flow/hyperlayer FFF (or other forms of lift hyperlayer FFF) is to expand the diameter range of micron size particles that can be resolved in a single run. By contrast, the reason for programming normal-mode FFF, the only kind of programming previously realized in FFF, is to reduce the analysis time of submicron particle samples of considerable size variability. These differences are explained in detail in relationship to the basic mechanisms governing retention in normal, steric, and lift hyperlayer FFF. Experiments are described in which field, flow, and dual programming are used to expand the accessible diameter range of flow/hyperlayer FFF. An example is shown in which 11 sizes of latex microspheres in the 2-48-microns diameter range are separated by dual programming in 11 min.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验