Suppr超能文献

基于分子路径编码的四个新拓扑指数。

Four new topological indices based on the molecular path code.

作者信息

Balaban Alexandru T, Beteringhe Adrian, Constantinescu Titus, Filip Petru A, Ivanciuc Ovidiu

机构信息

Texas A&M University at Galveston, 5007 Avenue U, Galveston, Texas 77551, USA.

出版信息

J Chem Inf Model. 2007 May-Jun;47(3):716-31. doi: 10.1021/ci6005068. Epub 2007 Mar 17.

Abstract

The sequence of all paths pi of lengths i = 1 to the maximum possible length in a hydrogen-depleted molecular graph (which sequence is also called the molecular path code) contains significant information on the molecular topology, and as such it is a reasonable choice to be selected as the basis of topological indices (TIs). Four new (or five partly new) TIs with progressively improved performance (judged by correctly reflecting branching, centricity, and cyclicity of graphs, ordering of alkanes, and low degeneracy) have been explored. (i) By summing the squares of all numbers in the sequence one obtains Sigmaipi(2), and by dividing this sum by one plus the cyclomatic number, a Quadratic TI is obtained: Q = Sigmaipi(2)/(mu+1). (ii) On summing the Square roots of all numbers in the sequence one obtains Sigmaipi(1/2), and by dividing this sum by one plus the cyclomatic number, the TI denoted by S is obtained: S = Sigmaipi(1/2)/(mu+1). (iii) On dividing terms in this sum by the corresponding topological distances, one obtains the Distance-reduced index D = Sigmai{pi(1/2)/[i(mu+1)]}. Two similar formulas define the next two indices, the first one with no square roots: (iv) distance-Attenuated index: A = Sigmai{pi/[i(mu + 1)]}; and (v) the last TI with two square roots: Path-count index: P = Sigmai{pi(1/2)/[i(1/2)(mu + 1)]}. These five TIs are compared for their degeneracy, ordering of alkanes, and performance in QSPR (for all alkanes with 3-12 carbon atoms and for all possible chemical cyclic or acyclic graphs with 4-6 carbon atoms) in correlations with six physical properties and one chemical property.

摘要

在一个贫氢分子图中,长度(i)从(1)到最大可能长度的所有路径(p_i)的序列(该序列也称为分子路径编码)包含有关分子拓扑的重要信息,因此将其选作拓扑指数(TIs)的基础是一个合理的选择。已探索了四个新的(或五个部分新的)拓扑指数,其性能逐步提高(通过正确反映图的分支、中心性和环性、烷烃的排序以及低简并性来判断)。(i)通过对序列中所有数字的平方求和,得到(\sum_{i}p_{i}^{2}),将该和除以(1)加圈秩,得到一个二次拓扑指数:(Q = \sum_{i}p_{i}^{2}/(\mu + 1))。(ii)对序列中所有数字的平方根求和,得到(\sum_{i}p_{i}^{1/2}),将该和除以(1)加圈秩,得到拓扑指数(S):(S = \sum_{i}p_{i}^{1/2}/(\mu + 1))。(iii)将该和中的各项除以相应的拓扑距离,得到距离缩减指数(D = \sum_{i}{p_{i}^{1/2}/[i(\mu + 1)]})。两个类似的公式定义了接下来的两个指数,第一个没有平方根:(iv)距离衰减指数:(A = \sum_{i}{p_{i}/[i(\mu + 1)]});(v)最后一个有两个平方根的拓扑指数:路径计数指数:(P = \sum_{i}{p_{i}^{1/2}/[i^{1/2}(\mu + 1)]})。在与六个物理性质和一个化学性质的相关性方面,对这五个拓扑指数的简并性、烷烃的排序以及在定量构效关系(QSPR)中的性能进行了比较(针对所有含(3 - 12)个碳原子的烷烃以及所有含(4 - 6)个碳原子的可能化学环状或非环状图)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验