Suppr超能文献

用于聚焦听觉注意力和注意力分散的分布式皮层网络。

Distributed cortical networks for focused auditory attention and distraction.

作者信息

Rinne Teemu, Kirjavainen Siiri, Salonen Oili, Degerman Alexander, Kang Xiaojian, Woods David L, Alho Kimmo

机构信息

Department of Psychology, University of Helsinki, and Helsinki Medical Imaging Center, Helsinki University Central Hospital, Finland.

出版信息

Neurosci Lett. 2007 Apr 18;416(3):247-51. doi: 10.1016/j.neulet.2007.01.077. Epub 2007 Feb 24.

Abstract

We used behavioral measures and functional magnetic resonance imaging (fMRI) to study the effects of parametrically varied task-irrelevant pitch changes in attended sounds on loudness-discrimination performance and brain activity in cortical surface maps. Ten subjects discriminated tone loudness in sequences that also included infrequent task-irrelevant pitch changes. Consistent with results of previous studies, the task-irrelevant pitch changes impaired performance in the loudness discrimination task. Auditory stimulation, attention-enhanced processing of sounds and motor responding during the loudness discrimination task activated supratemporal (auditory cortex) and inferior parietal areas bilaterally and left-hemisphere (contralateral to the hand used for responding) motor areas. Large pitch changes were associated with right hemisphere supratemporal activations as well as widespread bilateral activations in the frontal lobe and along the intraparietal sulcus. Loudness discrimination and distracting pitch changes activated common areas in the right supratemporal gyrus, left medial frontal cortex, left precentral gyrus, and left inferior parietal cortex.

摘要

我们使用行为测量和功能磁共振成像(fMRI)来研究在被关注声音中参数变化的任务无关音高变化对响度辨别性能和皮质表面图谱中脑活动的影响。十名受试者在包含偶尔任务无关音高变化的序列中辨别音调响度。与先前研究结果一致,任务无关音高变化损害了响度辨别任务的表现。听觉刺激、在响度辨别任务期间注意力增强的声音处理和运动反应激活了双侧颞上(听觉皮层)和顶下区域以及左半球(与用于反应的手对侧)运动区域。大的音高变化与右半球颞上激活以及额叶和沿顶内沟的广泛双侧激活有关。响度辨别和干扰性音高变化激活了右颞上回、左内侧额叶皮层、左中央前回和左顶下皮层中的共同区域。

相似文献

1
Distributed cortical networks for focused auditory attention and distraction.
Neurosci Lett. 2007 Apr 18;416(3):247-51. doi: 10.1016/j.neulet.2007.01.077. Epub 2007 Feb 24.
2
Stimulus-dependent activations and attention-related modulations in the auditory cortex: a meta-analysis of fMRI studies.
Hear Res. 2014 Jan;307:29-41. doi: 10.1016/j.heares.2013.08.001. Epub 2013 Aug 11.
3
Processing of auditory spatial cues in human cortex: an fMRI study.
Neuropsychologia. 2006;44(3):454-61. doi: 10.1016/j.neuropsychologia.2005.05.021. Epub 2005 Jul 20.
4
Segmental processing in the human auditory dorsal stream.
Brain Res. 2008 Jul 18;1220:179-90. doi: 10.1016/j.brainres.2007.11.013. Epub 2007 Nov 17.
5
Attention modulates sound processing in human auditory cortex but not the inferior colliculus.
Neuroreport. 2007 Aug 27;18(13):1311-4. doi: 10.1097/WNR.0b013e32826fb3bb.
6
Intrinsic, stimulus-driven and task-dependent connectivity in human auditory cortex.
Brain Struct Funct. 2018 Jun;223(5):2113-2127. doi: 10.1007/s00429-018-1612-6. Epub 2018 Jan 29.
7
Task-dependent activations of human auditory cortex during pitch discrimination and pitch memory tasks.
J Neurosci. 2009 Oct 21;29(42):13338-43. doi: 10.1523/JNEUROSCI.3012-09.2009.
8
Auditory attentional control and selection during cocktail party listening.
Cereb Cortex. 2010 Mar;20(3):583-90. doi: 10.1093/cercor/bhp124. Epub 2009 Jul 2.
9
Distinct cortical pathways for processing tool versus animal sounds.
J Neurosci. 2005 May 25;25(21):5148-58. doi: 10.1523/JNEUROSCI.0419-05.2005.

引用本文的文献

3
A cognitive model of response omissions in distraction paradigms.
Mem Cognit. 2022 Jul;50(5):962-978. doi: 10.3758/s13421-021-01265-z. Epub 2021 Dec 23.
5
A frontal attention mechanism in the visual mismatch negativity.
Behav Brain Res. 2015 Oct 15;293:173-81. doi: 10.1016/j.bbr.2015.07.022. Epub 2015 Jul 13.
6
Melodic interval perception by normal-hearing listeners and cochlear implant users.
J Acoust Soc Am. 2014 Oct;136(4):1831-44. doi: 10.1121/1.4894738.
7
Mismatch negativity in recent-onset and chronic schizophrenia: a current source density analysis.
PLoS One. 2014 Jun 20;9(6):e100221. doi: 10.1371/journal.pone.0100221. eCollection 2014.
8
Context effects on auditory distraction.
Biol Psychol. 2013 Oct;94(2):297-309. doi: 10.1016/j.biopsycho.2013.07.005. Epub 2013 Jul 22.
10
Brain networks of novelty-driven involuntary and cued voluntary auditory attention shifting.
PLoS One. 2012;7(8):e44062. doi: 10.1371/journal.pone.0044062. Epub 2012 Aug 28.

本文引用的文献

1
A source analysis of the late human auditory evoked potentials.
J Cogn Neurosci. 1989 Fall;1(4):336-55. doi: 10.1162/jocn.1989.1.4.336.
2
A neural mechanism for involuntary attention shifts to changes in auditory stimulation.
J Cogn Neurosci. 1996 Nov;8(6):527-39. doi: 10.1162/jocn.1996.8.6.527.
3
Two separate mechanisms underlie auditory change detection and involuntary control of attention.
Brain Res. 2006 Mar 10;1077(1):135-43. doi: 10.1016/j.brainres.2006.01.043. Epub 2006 Feb 20.
4
Parietal cortex mediates voluntary control of spatial and nonspatial auditory attention.
J Neurosci. 2006 Jan 11;26(2):435-9. doi: 10.1523/JNEUROSCI.4408-05.2006.
6
Modulation of auditory cortex activation by sound presentation rate and attention.
Hum Brain Mapp. 2005 Oct;26(2):94-9. doi: 10.1002/hbm.20123.
8
Advances in functional and structural MR image analysis and implementation as FSL.
Neuroimage. 2004;23 Suppl 1:S208-19. doi: 10.1016/j.neuroimage.2004.07.051.
10
Attentional modulation of human auditory cortex.
Nat Neurosci. 2004 Jun;7(6):658-63. doi: 10.1038/nn1256. Epub 2004 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验