Marinova Krasimira, Kleinschmidt Katja, Weissenböck Gottfried, Klein Markus
Zurich Basel Plant Science Center, University of Zurich, Plant Biology, CH-8008 Zurich, Switzerland.
Plant Physiol. 2007 May;144(1):432-44. doi: 10.1104/pp.106.094748. Epub 2007 Mar 16.
Barley (Hordeum vulgare) primary leaves synthesize saponarin, a 2-fold glucosylated flavone (apigenin 6-C-glucosyl-7-O-glucoside), which is efficiently accumulated in vacuoles via a transport mechanism driven by the proton gradient. Vacuoles isolated from mesophyll protoplasts of the plant line anthocyanin-less310 (ant310), which contains a mutation in the chalcone isomerase (CHI) gene that largely inhibits flavonoid biosynthesis, exhibit strongly reduced transport activity for saponarin and its precursor isovitexin (apigenin 6-C-glucoside). Incubation of ant310 primary leaf segments or isolated mesophyll protoplasts with naringenin, the product of the CHI reaction, restores saponarin biosynthesis almost completely, up to levels of the wild-type Ca33787. During reconstitution, saponarin accumulates to more than 90% in the vacuole. The capacity to synthesize saponarin from naringenin is strongly reduced in ant310 miniprotoplasts containing no central vacuole. Leaf segments and protoplasts from ant310 treated with naringenin showed strong reactivation of saponarin or isovitexin uptake by vacuoles, while the activity of the UDP-glucose:isovitexin 7-O-glucosyltransferase was not changed by this treatment. Our results demonstrate that efficient vacuolar flavonoid transport is linked to intact flavonoid biosynthesis in barley. Intact flavonoid biosynthesis exerts control over the activity of the vacuolar flavonoid/H(+)-antiporter. Thus, the barley ant310 mutant represents a novel model system to study the interplay between flavonoid biosynthesis and the vacuolar storage mechanism.
大麦(Hordeum vulgare)的初生叶合成皂草苷,一种双糖基化黄酮(芹菜素6 - C - 葡萄糖基 - 7 - O - 葡萄糖苷),它通过质子梯度驱动的转运机制有效地积累在液泡中。从无花青素310(ant310)植株系的叶肉原生质体中分离得到的液泡,该植株系的查尔酮异构酶(CHI)基因发生突变,极大地抑制了类黄酮生物合成,其对皂草苷及其前体异荭草素(芹菜素6 - C - 葡萄糖苷)的转运活性显著降低。用CHI反应产物柚皮素孵育ant310初生叶切段或分离的叶肉原生质体,几乎能完全恢复皂草苷的生物合成,达到野生型Ca33787的水平。在重建过程中,皂草苷在液泡中的积累量超过90%。在不含中央液泡的ant310小原生质体中,从柚皮素合成皂草苷的能力显著降低。用柚皮素处理的ant310叶切段和原生质体显示,液泡对皂草苷或异荭草素的摄取有强烈的再激活作用,而这种处理并未改变UDP - 葡萄糖:异荭草素7 - O - 葡萄糖基转移酶的活性。我们的结果表明,高效的液泡类黄酮转运与大麦中完整的类黄酮生物合成相关。完整的类黄酮生物合成对液泡类黄酮/H(+)逆向转运蛋白的活性发挥控制作用。因此,大麦ant310突变体代表了一个研究类黄酮生物合成与液泡储存机制之间相互作用的新型模型系统。