Suppr超能文献

焦虑敏感性的税基测量和因素分析模型:整合潜在结构研究方法

Taxometric and factor analytic models of anxiety sensitivity: integrating approaches to latent structural research.

作者信息

Bernstein Amit, Zvolensky Michael J, Norton Peter J, Schmidt Norman B, Taylor Steven, Forsyth John P, Lewis Sarah F, Feldner Matthew T, Leen-Feldner Ellen W, Stewart Sherry H, Cox Brian

机构信息

Department of Psychology, University of Vermont, Burlington, VT 05405-0134, USA.

出版信息

Psychol Assess. 2007 Mar;19(1):74-87. doi: 10.1037/1040-3590.19.1.74.

Abstract

This study represents an effort to better understand the latent structure of anxiety sensitivity (AS), as indexed by the 16-item Anxiety Sensitivity Index (ASI; S. Reiss, R. A. Peterson, M. Gursky, & R. J. McNally, 1986), by using taxometric and factor-analytic approaches in an integrative manner. Taxometric analyses indicated that AS has a taxonic latent class structure (i.e., a dichotomous latent class structure) in a large sample of North American adults (N=2,515). As predicted, confirmatory factor analyses indicated that a multidimensional 3-factor model of AS provided a good fit for the AS complement class (normative or low-risk form) but not the AS taxon class (high-risk form). Exploratory factor analytic results suggested that the AS taxon may demonstrate a unique, unidimensional factor solution, though there are alternative indications that it may be characterized by a 2-factor solution. Findings suggest that the latent structural nature of AS can be conceptualized as a taxonic latent class structure composed of 2 types or forms of AS, each of these forms characterized by its own unique latent continuity and dimensional structure.

摘要

本研究旨在通过综合运用分类分析和因素分析方法,更深入地理解焦虑敏感性(AS)的潜在结构,焦虑敏感性以16项焦虑敏感性指数(ASI;S. 赖斯、R. A. 彼得森、M. 古尔斯基和R. J. 麦克纳利,1986年)为指标。分类分析表明,在北美成年人的一个大样本(N = 2515)中,AS具有分类潜在类别结构(即二分潜在类别结构)。正如预测的那样,验证性因素分析表明,AS的多维三因素模型对AS补充类别(正常或低风险形式)拟合良好,但对AS分类类别(高风险形式)则不然。探索性因素分析结果表明,AS分类可能表现出一种独特的单维因素解决方案,尽管也有其他迹象表明它可能具有双因素解决方案的特征。研究结果表明,AS的潜在结构性质可被概念化为由两种类型或形式的AS组成的分类潜在类别结构,这些形式中的每一种都具有其自身独特的潜在连续性和维度结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验