Suppr超能文献

H₂对CeO₂(111)和(110)表面还原机理的理论研究

A theoretical study of surface reduction mechanisms of CeO(2)(111) and (110) by H(2).

作者信息

Chen Hsin-Tsung, Choi Yong Man, Liu Meilin, Lin M C

机构信息

Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.

出版信息

Chemphyschem. 2007 Apr 23;8(6):849-55. doi: 10.1002/cphc.200600598.

Abstract

Reaction mechanisms for the interactions between CeO(2)(111) and (110) surfaces are investigated using periodic density functional theory (DFT) calculations. Both standard DFT and DFT+U calculations to examine the effect of the localization of Ce 4f states on the redox chemistry of H(2)-CeO(2) interactions are described. For mechanistic studies, molecular and dissociative local minima are initially located by placing an H(2) molecule at various active sites of the CeO(2) surfaces. The binding energies of physisorbed species optimized using the DFT and DFT+U methods are very weak. The dissociative adsorption reactions producing hydroxylated surfaces are all exothermic; exothermicities at the DFT level range from 4.1 kcal mol(-1) for the (111) to 26.5 kcal mol(-1) for the (110) surface, while those at the DFT+U level are between 65.0 kcal mol(-1) for the (111) and 81.8 kcal mol(-1) for the (110) surface. Predicted vibrational frequencies of adsorbed OH and H(2)O species on the surfaces are in line with available experimental and theoretical results. Potential energy profiles are constructed by connecting molecularly adsorbed and dissociatively adsorbed intermediates on each CeO(2) surface with tight transition states using the nudged elastic band (NEB) method. It is found that the U correction method plays a significant role in energetics, especially for the intermediates of the exit channels and products that are partially reduced. The surface reduction reaction on CeO(2)(110) is energetically much more favorable. Accordingly, oxygen vacancies are more easily formed on the (110) surface than on the (111) surface.

摘要

采用周期性密度泛函理论(DFT)计算研究了CeO₂(111)和(110)表面之间相互作用的反应机理。描述了标准DFT和DFT+U计算,以研究Ce 4f态的局域化对H₂-CeO₂相互作用的氧化还原化学的影响。对于机理研究,通过将一个H₂分子置于CeO₂表面的各个活性位点,首先确定分子和离解的局部极小值。使用DFT和DFT+U方法优化的物理吸附物种的结合能非常弱。产生羟基化表面的离解吸附反应都是放热的;DFT水平下的放热量范围从(111)表面的4.1 kcal mol⁻¹到(110)表面的26.5 kcal mol⁻¹,而DFT+U水平下的放热量在(111)表面的65.0 kcal mol⁻¹到(110)表面的81.8 kcal mol⁻¹之间。预测的表面吸附OH和H₂O物种的振动频率与现有的实验和理论结果一致。利用推挤弹性带(NEB)方法,通过将每个CeO₂表面上分子吸附和解离吸附的中间体与紧密过渡态相连,构建了势能面。发现U校正方法在能量学中起着重要作用,特别是对于部分还原的出口通道和产物的中间体。CeO₂(110)上的表面还原反应在能量上更有利。因此,(110)表面比(111)表面更容易形成氧空位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验