Suppr超能文献

通过调控 CeO 多孔纳米棒的表面缺陷构建的固态受阻路易斯对催化剂

Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO.

机构信息

Center for Applied Chemical Research, Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, XiYi Hall, 99 Yanxiang Road, Xi'an, Shannxi 710049, China.

Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Nat Commun. 2017 May 18;8:15266. doi: 10.1038/ncomms15266.

Abstract

Identification on catalytic sites of heterogeneous catalysts at atomic level is important to understand catalytic mechanism. Surface engineering on defects of metal oxides can construct new active sites and regulate catalytic activity and selectivity. Here we outline the strategy by controlling surface defects of nanoceria to create the solid frustrated Lewis pair (FLP) metal oxide for efficient hydrogenation of alkenes and alkynes. Porous nanorods of ceria (PN-CeO) with a high concentration of surface defects construct new Lewis acidic sites by two adjacent surface Ce. The neighbouring surface lattice oxygen as Lewis base and constructed Lewis acid create solid FLP site due to the rigid lattice of ceria, which can easily dissociate H-H bond with low activation energy of 0.17 eV.

摘要

在原子水平上鉴定多相催化剂的催化位点对于理解催化机制非常重要。通过对金属氧化物缺陷的表面工程,可以构建新的活性位点,调节催化活性和选择性。在这里,我们概述了通过控制纳米氧化铈表面缺陷来构建固体受阻路易斯对(FLP)金属氧化物的策略,以实现烯烃和炔烃的高效加氢。具有高浓度表面缺陷的氧化铈纳米棒(PN-CeO)通过相邻的两个表面 Ce 构建了新的路易斯酸性位。相邻表面晶格氧作为路易斯碱,而构建的路易斯酸由于氧化铈的刚性晶格,会产生固体 FLP 位,这使得 H-H 键很容易解离,所需的活化能低至 0.17eV。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5639/5454379/d2d9134f43f8/ncomms15266-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验