Suppr超能文献

表面活性剂泊洛沙姆188治疗后体内电通透化骨骼肌的结构和功能恢复

Structural and functional recovery of electropermeabilized skeletal muscle in-vivo after treatment with surfactant poloxamer 188.

作者信息

Collins John M, Despa Florin, Lee Raphael C

机构信息

Department of Surgery, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.

出版信息

Biochim Biophys Acta. 2007 May;1768(5):1238-46. doi: 10.1016/j.bbamem.2007.01.012. Epub 2007 Jan 25.

Abstract

A critical requirement for cell survival after trauma is sealing of breaks in the cell membrane [M. Bier, S.M. Hammer, D.J. Canaday, R.C Lee, Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells, Bioelectromagnetics 20 (1999) 194-201; R.C. Lee, D.C. Gaylor, D. Bhatt, D.A. Israel, Role of cell membrane rupture in the pathogenesis of electrical trauma, J. Surg. Res. 44 (1988) 709-719; R.C. Lee, J.F. Burke, E.G. Cravalho (Eds.), Electrical Trauma: The Pathophysiology, Manifestations, and Clinical Management, Cambridge University Press, 1992; B.I. Tropea, R.C. Lee, Thermal injury kinetics in electrical trauma, J. Biomech. Engr. 114 (1992) 241-250; F. Despa, D.P. Orgill, J. Newalder, R.C Lee, The relative thermal stability of tissue macromolecules and cellular structure in burn injury, Burns 31 (2005) 568-577; T.A. Block, J.N. Aarsvold, K.L. Matthews II, R.A. Mintzer, L.P. River, M. Capelli-Schellpfeffer, R.L. Wollman, S. Tripathi, C.T. Chen, R.C. Lee, The 1995 Lindberg Award. Nonthermally mediated muscle injury and necrosis in electrical trauma, J. Burn Care and Rehabil. 16 (1995) 581-588; K. Miyake, P.L. McNeil, Mechanical injury and repair of cells, Crit. Care Med. 31 (2003) S496-S501; R.C. Lee, L.P. River, F.S. Pan, R.L. Wollmann, Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo, Proc. Natl. Acad. Sci. 89 (1992) 4524-4528; J.D. Marks, C.Y. Pan, T. Bushell, W. Cromie, R.C. Lee, Amphiphilic, tri-block copolymers provide potent membrane-targeted neuroprotection, FASEB J. 15 (2001) 1107-1109; B. Greenebaum, K. Blossfield, J. Hannig, C.S. Carrillo, M.A. Beckett, R.R. Weichselbaum, R.C. Lee, Poloxamer 188 prevents acute necrosis of adult skeletal muscle cells following high-dose irradiation, Burns 30 (2004) 539-547; G. Serbest, J. Horwitz, K. Barbee, The effect of poloxamer-188 on neuronal cell recovery from mechanical injury, J. Neurotrauma 22 (2005) 119-132]. The triblock copolymer surfactant Poloxamer 188 (P188) is known to increase the cell survival after membrane electroporation [R.C. Lee, L.P. River, F.S. Pan, R.L. Wollmann, Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo, Proc. Natl. Acad. Sci. 89 (1992) 4524-4528; Z. Ababneh, H. Beloeil, C.B. Berde, G. Gambarota, S.E. Maier, R.V. Mulkern, Biexponential parametrization of T2 and diffusion decay curves in a rat muscle edema model: Decay curve components and water compartments, Magn. Reson. Med. 54 (2005) 524-531]. Here, we use a rat hind-limb model of electroporation injury to determine if the intravenous administration of P188 improves the recovery of the muscle function. Rat hind-limbs received a sequence of either 0, 3, 6, 9, or 12 electrical current pulses (2 A, 4 ms duration, 10 s duty cycle). Magnetic resonance imaging (MRI) analysis, muscle water content and compound muscle action potential (CMAP) amplitudes were compared. Electroporation injury manifested edema formation and depression of the CMAP amplitudes. P188 (one bolus of 1 mg/ml of blood) was administrated 30 or 60 min after injury. Animals receiving P188 exhibited reduced tissue edema (p<0.05) and increased CMAP amplitudes (p<0.03). By comparison, treatment with 10 kDa neutral dextran, which produces similar serum osmotic effects as P188, had no effect on post-electroporation recovery. Noteworthy, the present results suggest that a single intravenous dose of P188 is effective to restore the structural integrity of damaged tissues with intact circulation.

摘要

创伤后细胞存活的一个关键要求是封闭细胞膜的破损处[M. Bier, S.M. Hammer, D.J. Canaday, R.C Lee,分离的哺乳动物骨骼肌细胞中瞬时电穿孔的封闭动力学,生物电磁学20 (1999) 194 - 201;R.C. Lee, D.C. Gaylor, D. Bhatt, D.A. Israel,细胞膜破裂在电创伤发病机制中的作用,外科研究杂志44 (1988) 709 - 719;R.C. Lee, J.F. Burke, E.G. Cravalho(编),电创伤:病理生理学、表现及临床处理,剑桥大学出版社,1992;B.I. Tropea, R.C. Lee,电创伤中的热损伤动力学,生物医学工程杂志114 (1992) 241 - 250;F. Despa, D.P. Orgill, J. Newalder, R.C Lee,烧伤损伤中组织大分子和细胞结构的相对热稳定性,烧伤31 (2005) 568 - 577;T.A. Block, J.N. Aarsvold, K.L. Matthews II, R.A. Mintzer, L.P. River, M. Capelli - Schellpfeffer, R.L. Wollman, S. Tripathi, C.T. Chen, R.C. Lee,1995年林德伯格奖。电创伤中非热介导的肌肉损伤和坏死,烧伤护理与康复16 (1995) 581 - 588;K. Miyake, P.L. McNeil,细胞的机械损伤与修复,危重病医学31 (2003) S496 - S501;R.C. Lee, L.P. River, F.S. Pan, R.L. Wollmann,表面活性剂诱导体内电通透化骨骼肌膜的封闭,美国国家科学院院刊89 (1992) 4524 - 4528;J.D. Marks, C.Y. Pan, T. Bushell, W. Cromie, R.C. Lee,两亲性三嵌段共聚物提供有效的膜靶向神经保护,美国实验生物学会联合会杂志15 (2001) 1107 - 1109;B. Greenebaum, K. Blossfield, J. Hannig, C.S. Carrillo, M.A. Beckett, R.R. Weichselbaum, R.C. Lee,泊洛沙姆188预防高剂量辐射后成年骨骼肌细胞的急性坏死,烧伤30 (2004) 539 - 547;G. Serbest, J. Horwitz, K. Barbee,泊洛沙姆 - 188对神经元细胞从机械损伤中恢复的影响,神经创伤杂志22 (2005) 119 - 132]。已知三嵌段共聚物表面活性剂泊洛沙姆188(P188)可提高膜电穿孔后的细胞存活率[R.C. Lee, L.P. River, F.S. Pan, R.L. Wollmann,表面活性剂诱导体内电通透化骨骼肌膜的封闭,美国国家科学院院刊89 (1992) 4524 - 4528;Z. Ababneh, H. Beloeil, C.B. Berde, G. Gambarota, S.E. Maier, R.V. Mulkern,大鼠肌肉水肿模型中T2和扩散衰减曲线的双指数参数化:衰减曲线成分和水隔室,磁共振成像医学54 (2005) 524 - 531]。在此,我们使用电穿孔损伤的大鼠后肢模型来确定静脉注射P188是否能改善肌肉功能的恢复。大鼠后肢接受0、3、6、9或12个电流脉冲序列(2 A,持续时间4 ms,占空比10 s)。比较磁共振成像(MRI)分析、肌肉含水量和复合肌肉动作电位(CMAP)幅度。电穿孔损伤表现为水肿形成和CMAP幅度降低。在损伤后30或60分钟给予P188(每毫升血液1 mg的单次推注)。接受P188的动物组织水肿减轻(p<0.05),CMAP幅度增加(p<0.03)。相比之下,用10 kDa中性葡聚糖治疗,其产生与P188相似的血清渗透效应,对电穿孔后的恢复没有影响。值得注意的是,目前的结果表明,单次静脉注射P188可有效恢复循环完整的受损组织的结构完整性。

相似文献

1
Structural and functional recovery of electropermeabilized skeletal muscle in-vivo after treatment with surfactant poloxamer 188.
Biochim Biophys Acta. 2007 May;1768(5):1238-46. doi: 10.1016/j.bbamem.2007.01.012. Epub 2007 Jan 25.
2
4
Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo.
Proc Natl Acad Sci U S A. 1992 May 15;89(10):4524-8. doi: 10.1073/pnas.89.10.4524.
5
Mg ATP and antioxidants augment the radioprotective effect of surfactant copolymers.
Health Phys. 2011 Dec;101(6):731-8. doi: 10.1097/HP.0b013e3182166759.
6
Tc-99m pyrophosphate imaging of poloxamer-treated electroporated skeletal muscle in an in vivo rat model.
Burns. 2006 Sep;32(6):755-64. doi: 10.1016/j.burns.2006.01.011. Epub 2006 Jul 11.
7
Pharmaceutical therapies for sealing of permeabilized cell membranes in electrical injuries.
Ann N Y Acad Sci. 1999 Oct 30;888:266-73. doi: 10.1111/j.1749-6632.1999.tb07961.x.
8
Towards an integrated phylogenetic classification of the Tremellomycetes.
Stud Mycol. 2015 Jun;81:85-147. doi: 10.1016/j.simyco.2015.12.001. Epub 2016 Jan 8.
9
Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
Zootaxa. 2020 Nov 16;4878(3):zootaxa.4878.3.2. doi: 10.11646/zootaxa.4878.3.2.
10
Surfactant sealing of membranes permeabilized by ionizing radiation.
Radiat Res. 2000 Aug;154(2):171-7. doi: 10.1667/0033-7587(2000)154[0171:ssompb]2.0.co;2.

引用本文的文献

1
Duchenne muscular dystrophy: disease mechanism and therapeutic strategies.
Front Physiol. 2023 Jun 26;14:1183101. doi: 10.3389/fphys.2023.1183101. eCollection 2023.
3
Molecular homing and retention of muscle membrane stabilizing copolymers by non-invasive optical imaging in vivo.
Mol Ther Methods Clin Dev. 2022 Dec 9;28:162-176. doi: 10.1016/j.omtm.2022.12.005. eCollection 2023 Mar 9.
4
How to alleviate cardiac injury from electric shocks at the cellular level.
Front Cardiovasc Med. 2022 Dec 22;9:1004024. doi: 10.3389/fcvm.2022.1004024. eCollection 2022.
5
Lipid Membrane Binding and Cell Protection Efficacy of Poly(1,2-butylene oxide)--poly(ethylene oxide) Copolymers.
Biomacromolecules. 2022 Mar 14;23(3):1433-1442. doi: 10.1021/acs.biomac.1c01661. Epub 2022 Feb 8.
6
The cellular response to plasma membrane disruption for nanomaterial delivery.
Nano Converg. 2022 Feb 1;9(1):6. doi: 10.1186/s40580-022-00298-7.
7
The Effect of Glucose and Poloxamer 188 on Red-Blood-Cell Aggregation.
Metabolites. 2021 Dec 18;11(12):886. doi: 10.3390/metabo11120886.
8
Spatial Distribution of PEO-PPO-PEO Block Copolymer and PEO Homopolymer in Lipid Bilayers.
Langmuir. 2020 Apr 7;36(13):3393-3403. doi: 10.1021/acs.langmuir.9b03208. Epub 2020 Mar 27.
9
Cardiac Muscle Membrane Stabilization in Myocardial Reperfusion Injury.
JACC Basic Transl Sci. 2019 Apr 29;4(2):275-287. doi: 10.1016/j.jacbts.2019.01.009. eCollection 2019 Apr.
10
Surfactant Copolymer Annealing of Chemically Permeabilized Cell Membranes.
Regen Eng Transl Med. 2018 Mar;4(1):1-10. doi: 10.1007/s40883-017-0044-9. Epub 2018 Mar 27.

本文引用的文献

1
Tc-99m pyrophosphate imaging of poloxamer-treated electroporated skeletal muscle in an in vivo rat model.
Burns. 2006 Sep;32(6):755-64. doi: 10.1016/j.burns.2006.01.011. Epub 2006 Jul 11.
2
Na+-K+ pump stimulation improves contractility in damaged muscle fibers.
Ann N Y Acad Sci. 2005 Dec;1066:286-94. doi: 10.1196/annals.1363.021.
3
Magnetic resonance imaging of changes in muscle tissues after membrane trauma.
Ann N Y Acad Sci. 2005 Dec;1066:272-85. doi: 10.1196/annals.1363.024.
4
Interaction between lipid monolayers and poloxamer 188: an X-ray reflectivity and diffraction study.
Biophys J. 2005 Nov;89(5):3159-73. doi: 10.1529/biophysj.104.052290. Epub 2005 Aug 12.
6
Dystrophic heart failure blocked by membrane sealant poloxamer.
Nature. 2005 Aug 18;436(7053):1025-9. doi: 10.1038/nature03844. Epub 2005 Jul 17.
7
The relative thermal stability of tissue macromolecules and cellular structure in burn injury.
Burns. 2005 Aug;31(5):568-77. doi: 10.1016/j.burns.2005.01.015. Epub 2005 Apr 7.
8
The effect of poloxamer-188 on neuronal cell recovery from mechanical injury.
J Neurotrauma. 2005 Jan;22(1):119-32. doi: 10.1089/neu.2005.22.119.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验