Suppr超能文献

对荧光共振能量转移(FRET)的担忧:kappa与R之间的相关性

Fretting about FRET: correlation between kappa and R.

作者信息

VanBeek Darren B, Zwier Matthew C, Shorb Justin M, Krueger Brent P

机构信息

Hope College, Department of Chemistry, Holland, Michigan, USA.

出版信息

Biophys J. 2007 Jun 15;92(12):4168-78. doi: 10.1529/biophysj.106.092650. Epub 2007 Mar 23.

Abstract

Molecular dynamics simulations were used to examine the structural dynamics of two fluorescent probes attached to a typical protein, hen egg-white lysozyme (HEWL). The donor probe (D) was attached via a succinimide group, consistent with the commonly-used maleimide conjugation chemistry, and the acceptor probe (A) was bound into the protein as occurs naturally for HEWL and the dye Eosin Y. The <kappa(2)> is found to deviate significantly from the theoretical value and high correlation between the orientation factor kappa and the distance R is observed. The correlation is quantified using several possible fixed A orientations and correlation as high as 0.80 is found between kappa and R and as high as 0.68 between kappa(2) and R. The presence of this correlation highlights the fact that essentially all fluorescence-detected resonance energy transfer studies have assumed that kappa and R are independent--an assumption that is clearly not justified in the system studied here. The correlation results in the quantities <kappa(2)R(-)(6)> and <kappa(2)> < R(-)(6)> differing by a factor of 1.6. The observed correlation between kappa and R is caused by the succinimide linkage between the D and HEWL, which is found to be relatively inflexible.

摘要

分子动力学模拟用于研究连接在典型蛋白质——鸡蛋清溶菌酶(HEWL)上的两种荧光探针的结构动力学。供体探针(D)通过琥珀酰亚胺基团连接,这与常用的马来酰亚胺共轭化学方法一致,受体探针(A)则如HEWL和染料伊红Y自然结合的方式那样与蛋白质结合。发现<κ(2)>显著偏离理论值,并且观察到取向因子κ与距离R之间存在高度相关性。使用几种可能的固定A取向对这种相关性进行了量化,发现κ与R之间的相关性高达0.80,κ(2)与R之间的相关性高达0.68。这种相关性的存在突出了一个事实,即基本上所有荧光检测共振能量转移研究都假定κ和R是相互独立的——而这一假设在此处研究的系统中显然是不合理的。这种相关性导致<κ(2)R⁻⁶>和<κ(2)><R⁻⁶>这两个量相差1.6倍。观察到的κ与R之间的相关性是由D与HEWL之间相对不灵活的琥珀酰亚胺连接引起的。

相似文献

1
Fretting about FRET: correlation between kappa and R.
Biophys J. 2007 Jun 15;92(12):4168-78. doi: 10.1529/biophysj.106.092650. Epub 2007 Mar 23.
3
Fluorescent resonant energy transfer: correlated fluctuations of donor and acceptor.
J Chem Phys. 2007 Dec 14;127(22):221101. doi: 10.1063/1.2812540.
5
Joint refinement of FRET measurements using spectroscopic and computational tools.
Anal Biochem. 2017 Apr 1;522:1-9. doi: 10.1016/j.ab.2017.01.011. Epub 2017 Jan 18.
7
Combining weak affinity chromatography, NMR spectroscopy and molecular simulations in carbohydrate-lysozyme interaction studies.
Org Biomol Chem. 2012 Apr 21;10(15):3019-32. doi: 10.1039/c2ob07066a. Epub 2012 Mar 6.
8
Competitive adsorption of labeled and native protein in confocal laser scanning microscopy.
Biotechnol Bioeng. 2006 Sep 5;95(1):58-66. doi: 10.1002/bit.20940.

引用本文的文献

4
Loop-closure kinetics reveal a stable, right-handed DNA intermediate in Cre recombination.
Nucleic Acids Res. 2020 May 7;48(8):4371-4381. doi: 10.1093/nar/gkaa153.
5
Theory of FRET "Spectroscopic Ruler" for Short Distances: Application to Polyproline.
J Phys Chem B. 2018 Jan 11;122(1):54-67. doi: 10.1021/acs.jpcb.7b09535. Epub 2017 Dec 22.
6
Challenging FRET-based E-Cadherin force measurements in Drosophila.
Sci Rep. 2017 Oct 20;7(1):13692. doi: 10.1038/s41598-017-14136-y.
7
Computational refinement of spectroscopic FRET measurements.
Data Brief. 2017 Apr 2;12:213-221. doi: 10.1016/j.dib.2017.03.041. eCollection 2017 Jun.
8
DNA-Dye-Conjugates: Conformations and Spectra of Fluorescence Probes.
PLoS One. 2016 Jul 28;11(7):e0160229. doi: 10.1371/journal.pone.0160229. eCollection 2016.

本文引用的文献

3
Energy transfer in the nanostar: the role of coulombic coupling and dynamics.
J Phys Chem B. 2005 Jun 16;109(23):11512-9. doi: 10.1021/jp050611j.
4
Protein structure and dynamics from single-molecule fluorescence resonance energy transfer.
J Phys Chem B. 2005 Feb 3;109(4):1626-34. doi: 10.1021/jp0478864.
5
Simulating FRET from tryptophan: is the rotamer model correct?
J Am Chem Soc. 2006 Apr 19;128(15):5142-52. doi: 10.1021/ja058414l.
6
Intramolecular energy transfer in molecules with a large number of conformations.
Proc Natl Acad Sci U S A. 1978 Mar;75(3):1050-1. doi: 10.1073/pnas.75.3.1050.
7
Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap.
Proc Natl Acad Sci U S A. 1969 May;63(1):23-30. doi: 10.1073/pnas.63.1.23.
9
Imaging protein molecules using FRET and FLIM microscopy.
Curr Opin Biotechnol. 2005 Feb;16(1):19-27. doi: 10.1016/j.copbio.2004.12.002.
10
Polyproline and the "spectroscopic ruler" revisited with single-molecule fluorescence.
Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2754-9. doi: 10.1073/pnas.0408164102. Epub 2005 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验