Fossey Sallyanne C, Vnencak-Jones Cindy L, Olsen Nancy J, Sriram Subramaniam, Garrison Gladys, Deng Xenquing, Crooke Philip S, Aune Thomas M
Department of Pathology, Vanderbilt University School of Medicine, Nashvill, Tennessee, USA.
J Mol Diagn. 2007 Apr;9(2):197-204. doi: 10.2353/jmoldx.2007.060147.
Multiple sclerosis is a demyelinating disease of the central nervous system with a presumed autoimmune etiology. Previous microarray analyses identified conserved gene expression signatures in peripheral blood mononuclear cells of patients with autoimmune diseases. We used quantitative real-time polymerase chain reaction analysis to identify a minimum number of genes of which transcript levels discriminated multiple sclerosis patients from patients with other chronic diseases and from controls. We used a computer program to search quantitative transcript levels to identify optimum ratios that distinguished among the different categories. A combination of a 4-ratio equation using expression levels of five genes segregated the multiple sclerosis cohort (n=55) from the control cohort (n=49) with a sensitivity of 91% and specificity of 98%. When autoimmune and other chronic disease groups were included (n=78), this discriminator still performed with a sensitivity of 79% and a specificity of 87%. This approach may have diagnostic utility not only for multiple sclerosis but also for other clinically complex autoimmune diseases.
多发性硬化症是一种中枢神经系统脱髓鞘疾病,病因推测为自身免疫性。先前的微阵列分析确定了自身免疫性疾病患者外周血单核细胞中保守的基因表达特征。我们使用定量实时聚合酶链反应分析来确定最少数量的基因,这些基因的转录水平可区分多发性硬化症患者与其他慢性病患者及对照组。我们使用计算机程序搜索定量转录水平,以确定区分不同类别的最佳比率。使用五个基因的表达水平组成的四比率方程组合,将多发性硬化症队列(n = 55)与对照队列(n = 49)区分开来,灵敏度为91%,特异性为98%。当纳入自身免疫性疾病和其他慢性病组(n = 78)时,这种鉴别方法的灵敏度仍为79%,特异性为87%。这种方法不仅对多发性硬化症,而且对其他临床复杂的自身免疫性疾病可能都具有诊断价值。