Häfliger Philipp
Institute of Informatics, University of Oslo, Oslo N-0316, Norway.
IEEE Trans Neural Netw. 2007 Mar;18(2):551-72. doi: 10.1109/TNN.2006.884676.
In this paper, we demonstrate how a particular spike-based learning rule (where exact temporal relations between input and output spikes of a spiking model neuron determine the changes of the synaptic weights) can be tuned to express rate-based classical Hebbian learning behavior (where the average input and output spike rates are sufficient to describe the synaptic changes). This shift in behavior is controlled by the input statistic and by a single time constant. The learning rule has been implemented in a neuromorphic very large scale integration (VLSI) chip as part of a neurally inspired spike signal image processing system. The latter is the result of the European Union research project Convolution AER Vision Architecture for Real-Time (CAVIAR). Since it is implemented as a spike-based learning rule (which is most convenient in the overall spike-based system), even if it is tuned to show rate behavior, no explicit long-term average signals are computed on the chip. We show the rule's rate-based Hebbian learning ability in a classification task in both simulation and chip experiment, first with artificial stimuli and then with sensor input from the CAVIAR system.
在本文中,我们展示了如何调整一种特定的基于脉冲的学习规则(其中脉冲模型神经元的输入和输出脉冲之间的确切时间关系决定了突触权重的变化),使其表现出基于速率的经典赫布学习行为(其中平均输入和输出脉冲速率足以描述突触变化)。这种行为的转变由输入统计量和一个时间常数控制。该学习规则已在一个神经形态超大规模集成(VLSI)芯片中实现,作为一个受神经启发的脉冲信号图像处理系统的一部分。后者是欧盟实时卷积AER视觉架构(CAVIAR)研究项目的成果。由于它是作为基于脉冲的学习规则实现的(这在整个基于脉冲的系统中最为方便),即使它被调整为表现出速率行为,芯片上也不会计算明确的长期平均信号。我们在模拟和芯片实验中的分类任务中展示了该规则基于速率的赫布学习能力,首先使用人工刺激,然后使用来自CAVIAR系统的传感器输入。