Serrano-Gotarredona Rafael, Oster Matthias, Lichtsteiner Patrick, Linares-Barranco Alejandro, Paz-Vicente Rafael, Gomez-Rodriguez Francisco, Camunas-Mesa Luis, Berner Raphael, Rivas-Perez Manuel, Delbruck Tobi, Liu Shih-Chii, Douglas Rodney, Hafliger Philipp, Jimenez-Moreno Gabriel, Civit Ballcels Anton, Serrano-Gotarredona Teresa, Acosta-Jimenez Antonio J, Linares-Barranco Bernabé
Austriamicrosystems, Valencia, Spain.
IEEE Trans Neural Netw. 2009 Sep;20(9):1417-38. doi: 10.1109/TNN.2009.2023653. Epub 2009 Jul 24.
This paper describes CAVIAR, a massively parallel hardware implementation of a spike-based sensing-processing-learning-actuating system inspired by the physiology of the nervous system. CAVIAR uses the asychronous address-event representation (AER) communication framework and was developed in the context of a European Union funded project. It has four custom mixed-signal AER chips, five custom digital AER interface components, 45k neurons (spiking cells), up to 5M synapses, performs 12G synaptic operations per second, and achieves millisecond object recognition and tracking latencies.
本文介绍了CAVIAR,这是一种受神经系统生理学启发的基于脉冲的传感-处理-学习-驱动系统的大规模并行硬件实现。CAVIAR使用异步地址事件表示(AER)通信框架,是在欧盟资助项目的背景下开发的。它有四个定制的混合信号AER芯片、五个定制的数字AER接口组件、45000个神经元(脉冲细胞)、多达500万个突触,每秒执行120亿次突触操作,并实现了毫秒级的目标识别和跟踪延迟。