Suppr超能文献

将多孔膜无泄漏地粘结到分层微流控阵列系统中。

Leakage-free bonding of porous membranes into layered microfluidic array systems.

作者信息

Chueh Bor-han, Huh Dongeun, Kyrtsos Christina R, Houssin Timothée, Futai Nobuyuki, Takayama Shuichi

机构信息

Department of Biomedical Engineering and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Anal Chem. 2007 May 1;79(9):3504-8. doi: 10.1021/ac062118p. Epub 2007 Mar 28.

Abstract

The integration of semiporous membranes into poly(dimethylsiloxane) (PDMS) microfluidic devices is useful for mass transport control. Several methods such as plasma oxidation and manual application of PDMS prepolymer exist to sandwich such membranes into simple channel structures, but these methods are difficult to implement with reliable sealing and no leakage or clogging for devices with intricate channel features. This paper describes a simple but robust strategy to bond semiporous polyester and polycarbonate membranes between layers of PDMS microchannel structures effectively without channel clogging. A thin layer of PDMS prepolymer, spin-coated on a glass slide, is transferred to PDMS substrates with channel features as well as to the edges of the semiporous membrane by stamping. This thin PDMS prepolymer serves as "mortar" to strongly bond the two PDMS layers and seal off the crevices generated from the thickness of the membranes. This bonding method enabled the fabrication of an 8x12 criss-crossing microfluidic channel array with 96 combinations of fluid interactions. The capability of this device for bioanalysis was demonstrated by measuring responses of cells to different color fluorescent reagents.

摘要

将半透膜集成到聚二甲基硅氧烷(PDMS)微流控装置中有助于控制质量传输。存在多种方法,如等离子体氧化和手动涂抹PDMS预聚物,可将此类膜夹在简单的通道结构中,但对于具有复杂通道特征的装置,这些方法难以实现可靠密封且无泄漏或堵塞。本文描述了一种简单而稳健的策略,可有效将半透性聚酯膜和聚碳酸酯膜粘结在PDMS微通道结构层之间,且不会造成通道堵塞。旋涂在载玻片上的一层薄PDMS预聚物,通过冲压转移到具有通道特征的PDMS基板以及半透膜的边缘。这种薄PDMS预聚物充当“灰浆”,牢固地粘结两个PDMS层,并密封因膜的厚度而产生的缝隙。这种粘结方法能够制造出具有96种流体相互作用组合的8×12交叉微流控通道阵列。通过测量细胞对不同颜色荧光试剂的反应,证明了该装置用于生物分析的能力。

相似文献

1
Leakage-free bonding of porous membranes into layered microfluidic array systems.
Anal Chem. 2007 May 1;79(9):3504-8. doi: 10.1021/ac062118p. Epub 2007 Mar 28.
2
Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
Lab Chip. 2005 Dec;5(12):1393-8. doi: 10.1039/b510494g. Epub 2005 Oct 17.
3
Fabrication improvements for thermoset polyester (TPE) microfluidic devices.
Lab Chip. 2007 Jul;7(7):923-6. doi: 10.1039/b702548c. Epub 2007 May 11.
4
Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
Anal Chem. 2006 Aug 1;78(15):5543-51. doi: 10.1021/ac060605z.
5
Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications.
Anal Chem. 2008 May 1;80(9):3507-11. doi: 10.1021/ac800157q. Epub 2008 Apr 2.
7
Components for integrated poly(dimethylsiloxane) microfluidic systems.
Electrophoresis. 2002 Oct;23(20):3461-73. doi: 10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8.
8
Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane.
Lab Chip. 2008 Apr;8(4):596-601. doi: 10.1039/b717900f. Epub 2008 Mar 4.
9
A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
Lab Chip. 2010 Jan 7;10(1):36-42. doi: 10.1039/b907515a. Epub 2009 Aug 26.

引用本文的文献

4
Catalase Detection via Membrane-Based Pressure Sensors.
Molecules. 2024 Mar 28;29(7):1506. doi: 10.3390/molecules29071506.
5
Direct deep UV lithography to micropattern PMMA for stem cell culture.
Mater Today Bio. 2023 Aug 29;22:100779. doi: 10.1016/j.mtbio.2023.100779. eCollection 2023 Oct.
6
Analysis of metabolites and metabolism-mediated biological activity assessment of ginsenosides on microfluidic co-culture system.
Front Pharmacol. 2023 Jan 30;14:1046722. doi: 10.3389/fphar.2023.1046722. eCollection 2023.
7
Overcoming technological barriers in microfluidics: Leakage testing.
Front Bioeng Biotechnol. 2022 Sep 7;10:958582. doi: 10.3389/fbioe.2022.958582. eCollection 2022.
9
Potential of CO-laser processing of quartz for fast prototyping of microfluidic reactors and templates for 3D cell assembly over large scale.
Mater Today Bio. 2021 Nov 22;12:100163. doi: 10.1016/j.mtbio.2021.100163. eCollection 2021 Sep.
10
PerfuPul-A Versatile Perfusable Platform to Assess Permeability and Barrier Function of Air Exposed Pulmonary Epithelia.
Front Bioeng Biotechnol. 2021 Oct 6;9:743236. doi: 10.3389/fbioe.2021.743236. eCollection 2021.

本文引用的文献

1
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.
2
Membranes and microfluidics: a review.
Lab Chip. 2006 Sep;6(9):1125-39. doi: 10.1039/b603275c. Epub 2006 Jul 14.
4
Characterization of a membrane-based gradient generator for use in cell-signaling studies.
Lab Chip. 2006 Mar;6(3):389-93. doi: 10.1039/b514133h. Epub 2006 Feb 1.
6
Microscale technologies for tissue engineering and biology.
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2480-7. doi: 10.1073/pnas.0507681102. Epub 2006 Feb 13.
7
Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
Lab Chip. 2005 Dec;5(12):1393-8. doi: 10.1039/b510494g. Epub 2005 Oct 17.
8
Multipurpose microfluidic probe.
Nat Mater. 2005 Aug;4(8):622-8. doi: 10.1038/nmat1435. Epub 2005 Jul 24.
10
Fabrication of reconfigurable protein matrices by cracking.
Nat Mater. 2005 May;4(5):403-6. doi: 10.1038/nmat1365. Epub 2005 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验