Hyberts Sven G, Heffron Gregory J, Tarragona Nestor G, Solanky Kirty, Edmonds Katherine A, Luithardt Harry, Fejzo Jasna, Chorev Michael, Aktas Huseyin, Colson Kimberly, Falchuk Kenneth H, Halperin Jose A, Wagner Gerhard
Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
J Am Chem Soc. 2007 Apr 25;129(16):5108-16. doi: 10.1021/ja068541x. Epub 2007 Mar 28.
To obtain a comprehensive assessment of metabolite levels from extracts of leukocytes, we have recorded ultrahigh-resolution 1H-13C HSQC NMR spectra of cell extracts, which exhibit spectral signatures of numerous small molecules. However, conventional acquisition of such spectra is time-consuming and hampers measurements on multiple samples, which would be needed for statistical analysis of metabolite concentrations. Here we show that the measurement time can be dramatically reduced without loss of spectral quality when using nonlinear sampling (NLS) and a new high-fidelity forward maximum-entropy (FM) reconstruction algorithm. This FM reconstruction conserves all measured time-domain data points and guesses the missing data points by an iterative process. This consists of discrete Fourier transformation of the sparse time-domain data set, computation of the spectral entropy, determination of a multidimensional entropy gradient, and calculation of new values for the missing time-domain data points with a conjugate gradient approach. Since this procedure does not alter measured data points, it reproduces signal intensities with high fidelity and does not suffer from a dynamic range problem. As an example we measured a natural abundance 1H-13C HSQC spectrum of metabolites from granulocyte cell extracts. We show that a high-resolution 1H-13C HSQC spectrum with 4k complex increments recorded linearly within 3.7 days can be reconstructed from one-seventh of the increments with nearly identical spectral appearance, indistinguishable signal intensities, and comparable or even lower root-mean-square (rms) and peak noise patterns measured in signal-free areas. Thus, this approach allows recording of ultrahigh resolution 1H-13C HSQC spectra in a fraction of the time needed for recording linearly sampled spectra.
为了全面评估白细胞提取物中的代谢物水平,我们记录了细胞提取物的超高分辨率1H-13C HSQC NMR光谱,这些光谱显示了众多小分子的光谱特征。然而,常规采集此类光谱耗时且妨碍对多个样品的测量,而这对于代谢物浓度的统计分析是必需的。在此我们表明,当使用非线性采样(NLS)和一种新的高保真前向最大熵(FM)重建算法时,测量时间可大幅缩短且不损失光谱质量。这种FM重建保留了所有测量的时域数据点,并通过迭代过程猜测缺失的数据点。这包括对稀疏时域数据集进行离散傅里叶变换、计算光谱熵、确定多维熵梯度,以及使用共轭梯度法计算缺失时域数据点的新值。由于此过程不会改变测量的数据点,它能以高保真度再现信号强度,且不存在动态范围问题。例如,我们测量了粒细胞细胞提取物中代谢物的天然丰度1H-13C HSQC光谱。我们表明,在3.7天内线性记录的具有4k个复数增量的高分辨率1H-13C HSQC光谱,可以从七分之一的增量中重建出来,其光谱外观几乎相同,信号强度难以区分,并且在无信号区域测量的均方根(rms)和峰值噪声模式相当甚至更低。因此,这种方法能够在记录线性采样光谱所需时间的一小部分内记录超高分辨率的1H-13C HSQC光谱。