Suppr超能文献

高动态范围核磁共振谱的高保真采样时间表。

High fidelity sampling schedules for NMR spectra of high dynamic range.

作者信息

Hyberts Sven G, Wagner Gerhard

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States.

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States.

出版信息

J Magn Reson. 2022 Jun;339:107228. doi: 10.1016/j.jmr.2022.107228. Epub 2022 Apr 26.

Abstract

The ability to reconstruct non-uniformly sampled (NUS) NMR spectra has mostly been accepted. Still a concern is lingering regarding artifacts from sampling non-uniformly. As experienced, some sampling schedules yield better results than others. Finding a useful schedule is relatively trivial for a low dynamic range spectrum and a conservative sparsity, but not so when the dynamic range is large and/or when extreme sparsity is used. High dynamic range is typically found in NOESY and spectra of metabolites, where quantification of peak heights is desired at high fidelity. Extreme sparsity is desired when high throughput is a goal. In all cases, selecting a poor sampling schedule can create unnecessary artifacts. Effectively, it is important to select a sampling schedule that provides a signal-to-artifact apex ratio (SAAR) value in par or better than the signal-to-noise ratio (SNR) value. Notably, by signal-to-artifact apex ratio we consider reconstruction fidelity as the apex intensity likeness, i.e., as the true signal to the tallest artifact. We show that the quality of reconstruction depends on the particular sampling schedule. We evaluate the reconstruction quality in the frequency domain following a matched Lorentz-to-Gauss transform plus common apodization and Fourier Transform. As the Lorentz-to-Gauss transform improves resolution and reduces ridges we include this when defining the Signal-to-Artifact Apex Ratio (SAAR) metric. This metric measures the ratio of simulated reconstructed peak height to the tallest artifact of reconstruction in a spectrum without noise. Once a NUS schedule is found with an optimal SAAR it will be satisfactory for all spectra recorded with the same parameter set. Tables with good seed values are provided in the supplement.

摘要

非均匀采样(NUS)核磁共振(NMR)谱的重建能力已基本得到认可。然而,对于非均匀采样产生的伪影仍存在担忧。经验表明,某些采样方案比其他方案能产生更好的结果。对于低动态范围谱和保守稀疏度而言,找到一个有用的采样方案相对容易,但当动态范围较大和/或使用极端稀疏度时则并非如此。高动态范围通常出现在NOESY谱和代谢物谱中,在这些谱中需要高精度地定量峰高。当以高通量为目标时,则需要极端稀疏度。在所有情况下,选择不佳的采样方案可能会产生不必要的伪影。实际上,选择一个能提供与信噪比(SNR)值相当或更好的信号与伪影峰值比(SAAR)值的采样方案非常重要。值得注意的是,对于信号与伪影峰值比,我们将重建保真度视为峰值强度相似度,即真实信号与最高伪影的比值。我们表明,重建质量取决于特定的采样方案。我们在进行匹配的洛伦兹到高斯变换加上常用的变迹和傅里叶变换后,在频域中评估重建质量。由于洛伦兹到高斯变换提高了分辨率并减少了脊峰,我们在定义信号与伪影峰值比(SAAR)指标时纳入了这一变换。该指标测量在无噪声谱中模拟重建峰高与重建的最高伪影的比值。一旦找到具有最佳SAAR的NUS采样方案,对于使用相同参数集记录的所有谱来说,它都将是令人满意的。补充材料中提供了具有良好种子值的表格。

相似文献

引用本文的文献

1
Evaluating metrics of spectral quality in nonuniform sampling.评估非均匀采样中频谱质量的指标。
J Magn Reson Open. 2025 Jun;23. doi: 10.1016/j.jmro.2025.100187. Epub 2025 Jan 27.
2
Non-Uniform Sampling for Quantitative NOESY.定量NOESY的非均匀采样
Magn Reson Chem. 2025 Jul;63(7):495-507. doi: 10.1002/mrc.5529. Epub 2025 May 16.

本文引用的文献

1
Clustered sparsity and Poisson-gap sampling.聚类稀疏性和泊松间隔采样。
J Biomol NMR. 2021 Dec;75(10-12):401-416. doi: 10.1007/s10858-021-00385-7. Epub 2021 Nov 5.
2
Reducing the measurement time of exact NOEs by non-uniform sampling.通过非均匀采样减少精确 NOE 的测量时间。
J Biomol NMR. 2020 Dec;74(12):717-739. doi: 10.1007/s10858-020-00344-8. Epub 2020 Sep 3.
3
Software for reconstruction of nonuniformly sampled NMR data.用于重建非均匀采样 NMR 数据的软件。
Magn Reson Chem. 2021 Mar;59(3):315-323. doi: 10.1002/mrc.5060. Epub 2020 Jul 14.
7
Nonuniform sampling by quantiles.分位数非均匀采样。
J Magn Reson. 2018 Mar;288:109-121. doi: 10.1016/j.jmr.2018.01.014. Epub 2018 Feb 13.
9
NMRbox: A Resource for Biomolecular NMR Computation.NMRbox:生物分子核磁共振计算资源
Biophys J. 2017 Apr 25;112(8):1529-1534. doi: 10.1016/j.bpj.2017.03.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验