Kaur Manpreet, Lewis Callie M, Chronister Aaron, Phun Gabriel S, Mueller Leonard J
Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States.
J Phys Chem A. 2020 Jul 2;124(26):5474-5486. doi: 10.1021/acs.jpca.0c02930. Epub 2020 Jun 18.
The increased sensitivity under weighted non-uniform sampling (NUS) is demonstrated and quantified using Monte Carlo simulations of nuclear magnetic resonance (NMR) time- and frequency-domain signals. The concept of spectral knowledge is introduced and shown to be superior to the frequency-domain signal-to-noise ratio for assessing the quality of NMR data. Two methods for rigorously preserving spectral knowledge and the time-domain NUS knowledge enhancement upon transformation to the frequency domain are demonstrated, both theoretically and numerically. The first, non-uniform weighted sampling using consistent root-mean-square noise, is applicable to data sampled on the Nyquist grid, whereas the second, the block Fourier transform using consistent root-mean-square noise, can be used to transform time-domain data acquired with arbitrary, off-grid NUS.
通过对核磁共振(NMR)时域和频域信号进行蒙特卡罗模拟,证明并量化了加权非均匀采样(NUS)下提高的灵敏度。引入了频谱知识的概念,并表明在评估NMR数据质量方面,它优于频域信噪比。从理论和数值两方面展示了两种在变换到频域时严格保留频谱知识和时域NUS知识增强的方法。第一种是使用一致均方根噪声的非均匀加权采样,适用于在奈奎斯特网格上采样的数据;而第二种是使用一致均方根噪声的块傅里叶变换,可用于变换通过任意离网格NUS采集的时域数据。