Suppr超能文献

用于预测HIV-1共受体使用情况的gp120 V3环的结构描述符。

Structural descriptors of gp120 V3 loop for the prediction of HIV-1 coreceptor usage.

作者信息

Sander Oliver, Sing Tobias, Sommer Ingolf, Low Andrew J, Cheung Peter K, Harrigan P Richard, Lengauer Thomas, Domingues Francisco S

机构信息

Max-Planck-Institute for Informatics, Saarbrücken, Germany.

出版信息

PLoS Comput Biol. 2007 Mar 30;3(3):e58. doi: 10.1371/journal.pcbi.0030058. Epub 2007 Feb 8.

Abstract

HIV-1 cell entry commonly uses, in addition to CD4, one of the chemokine receptors CCR5 or CXCR4 as coreceptor. Knowledge of coreceptor usage is critical for monitoring disease progression as well as for supporting therapy with the novel drug class of coreceptor antagonists. Predictive methods for inferring coreceptor usage based on the third hypervariable (V3) loop region of the viral gene coding for the envelope protein gp120 can provide us with these monitoring facilities while avoiding expensive phenotypic tests. All simple heuristics (such as the 11/25 rule) as well as statistical learning methods proposed to date predict coreceptor usage based on sequence features of the V3 loop exclusively. Here, we show, based on a recently resolved structure of gp120 with an untruncated V3 loop, that using structural information on the V3 loop in combination with sequence features of V3 variants improves prediction of coreceptor usage. In particular, we propose a distance-based descriptor of the spatial arrangement of physicochemical properties that increases discriminative performance. For a fixed specificity of 0.95, a sensitivity of 0.77 was achieved, improving further to 0.80 when combined with a sequence-based representation using amino acid indicators. This compares favorably with the sensitivities of 0.62 for the traditional 11/25 rule and 0.73 for a prediction based on sequence information as input to a support vector machine and constitutes a statistically significant improvement. A detailed analysis and interpretation of structural features important for classification shows the relevance of several specific hydrogen-bond donor sites and aliphatic side chains to coreceptor specificity towards CCR5 or CXCR4. Furthermore, an analysis of side chain orientation of the specificity-determining residues suggests a major role of one side of the V3 loop in the selection of the coreceptor. The proposed method constitutes the first approach to an improved prediction of coreceptor usage based on an original integration of structural bioinformatics methods with statistical learning.

摘要

除CD4外,HIV-1进入细胞通常还会利用趋化因子受体CCR5或CXCR4中的一种作为共受体。了解共受体的使用情况对于监测疾病进展以及支持使用新型共受体拮抗剂药物进行治疗至关重要。基于编码包膜蛋白gp120的病毒基因的第三个高变(V3)环区域推断共受体使用情况的预测方法,能够为我们提供这些监测手段,同时避免昂贵的表型测试。所有简单的启发式方法(如11/25规则)以及迄今为止提出的统计学习方法,都仅基于V3环的序列特征来预测共受体的使用情况。在此,我们基于最近解析的带有完整V3环的gp120结构表明,将V3环的结构信息与V3变体的序列特征相结合,可提高对共受体使用情况的预测。特别是,我们提出了一种基于距离的物理化学性质空间排列描述符,可提高判别性能。在固定特异性为0.95时,灵敏度达到0.77;当与使用氨基酸指标的基于序列的表示相结合时,灵敏度进一步提高到0.80。这与传统11/25规则的灵敏度0.62以及基于序列信息作为支持向量机输入的预测灵敏度0.73相比具有优势,并且构成了统计学上的显著改进。对分类重要的结构特征的详细分析和解释表明,几个特定的氢键供体位点和脂肪族侧链与共受体对CCR5或CXCR4的特异性相关。此外,对特异性决定残基侧链取向的分析表明,V环一侧在共受体选择中起主要作用。所提出的方法构成了基于结构生物信息学方法与统计学习的原始整合来改进共受体使用情况预测的第一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af4/1848001/05d58aa8e4f3/pcbi.0030058.g001.jpg

相似文献

4
Genotypic coreceptor analysis.基因型共受体分析。
Eur J Med Res. 2007 Oct 15;12(9):453-62.

引用本文的文献

本文引用的文献

3
5
HIV and the chemokine system: 10 years later.HIV与趋化因子系统:十年之后
EMBO J. 2006 Feb 8;25(3):447-56. doi: 10.1038/sj.emboj.7600947. Epub 2006 Jan 26.
7
Structure of a V3-containing HIV-1 gp120 core.含V3区的HIV-1 gp120核心结构。
Science. 2005 Nov 11;310(5750):1025-8. doi: 10.1126/science.1118398.
8
The geographic spread of the CCR5 Delta32 HIV-resistance allele.CCR5基因Δ32型HIV抗性等位基因的地理分布。
PLoS Biol. 2005 Nov;3(11):e339. doi: 10.1371/journal.pbio.0030339. Epub 2005 Oct 18.
10
ROCR: visualizing classifier performance in R.ROCR:在R语言中可视化分类器性能
Bioinformatics. 2005 Oct 15;21(20):3940-1. doi: 10.1093/bioinformatics/bti623. Epub 2005 Aug 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验