Suppr超能文献

胞质磷酸烯醇式丙酮酸羧激酶并非唯一控制完整小鼠肝脏中肝糖异生速率的因素。

Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver.

作者信息

Burgess Shawn C, He TianTeng, Yan Zheng, Lindner Jill, Sherry A Dean, Malloy Craig R, Browning Jeffrey D, Magnuson Mark A

机构信息

The Advanced Imaging Research Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235-9085, USA.

出版信息

Cell Metab. 2007 Apr;5(4):313-20. doi: 10.1016/j.cmet.2007.03.004.

Abstract

When dietary carbohydrate is unavailable, glucose required to support metabolism in vital tissues is generated via gluconeogenesis in the liver. Expression of phosphoenolpyruvate carboxykinase (PEPCK), commonly considered the control point for liver gluconeogenesis, is normally regulated by circulating hormones to match systemic glucose demand. However, this regulation fails in diabetes. Because other molecular and metabolic factors can also influence gluconeogenesis, the explicit role of PEPCK protein content in the control of gluconeogenesis was unclear. In this study, metabolic control of liver gluconeogenesis was quantified in groups of mice with varying PEPCK protein content. Surprisingly, livers with a 90% reduction in PEPCK content showed only a approximately 40% reduction in gluconeogenic flux, indicating a lower than expected capacity for PEPCK protein content to control gluconeogenesis. However, PEPCK flux correlated tightly with TCA cycle activity, suggesting that under some conditions in mice, PEPCK expression must coordinate with hepatic energy metabolism to control gluconeogenesis.

摘要

当饮食中缺乏碳水化合物时,肝脏通过糖异生作用生成维持重要组织新陈代谢所需的葡萄糖。磷酸烯醇式丙酮酸羧激酶(PEPCK)的表达通常被认为是肝脏糖异生作用的控制点,其表达通常受循环激素调节,以匹配全身葡萄糖需求。然而,在糖尿病中这种调节会失效。由于其他分子和代谢因素也会影响糖异生作用,PEPCK蛋白含量在糖异生控制中的具体作用尚不清楚。在本研究中,对PEPCK蛋白含量不同的小鼠组肝脏糖异生的代谢控制进行了量化。令人惊讶的是,PEPCK含量降低90%的肝脏糖异生通量仅降低了约40%,这表明PEPCK蛋白含量控制糖异生的能力低于预期。然而,PEPCK通量与三羧酸循环活性密切相关,这表明在小鼠的某些条件下,PEPCK表达必须与肝脏能量代谢协调以控制糖异生。

相似文献

2
PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis.
J Hepatol. 2013 Jul;59(1):105-13. doi: 10.1016/j.jhep.2013.02.020. Epub 2013 Mar 4.
3
Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase.
J Biol Chem. 2004 Nov 19;279(47):48941-9. doi: 10.1074/jbc.M407120200. Epub 2004 Sep 3.
4
A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) in the regulation of hepatic gluconeogenesis.
J Biol Chem. 2014 Mar 14;289(11):7257-63. doi: 10.1074/jbc.C113.544759. Epub 2014 Feb 4.
5
The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) and glucose homeostasis: has it been overlooked?
Biochim Biophys Acta. 2014 Apr;1840(4):1313-30. doi: 10.1016/j.bbagen.2013.10.033. Epub 2013 Oct 28.
6
Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism.
Mol Cell Biol. 2000 Sep;20(17):6508-17. doi: 10.1128/MCB.20.17.6508-6517.2000.
9
Pck1 gene silencing in the liver improves glycemia control, insulin sensitivity, and dyslipidemia in db/db mice.
Diabetes. 2008 Aug;57(8):2199-210. doi: 10.2337/db07-1087. Epub 2008 Apr 28.
10
Regulation of hepatic gluconeogenesis by nuclear factor Y transcription factor in mice.
J Biol Chem. 2018 May 18;293(20):7894-7904. doi: 10.1074/jbc.RA117.000508. Epub 2018 Mar 12.

引用本文的文献

1
Control of physiologic glucose homeostasis via hypothalamic modulation of gluconeogenic substrate availability.
Mol Metab. 2025 Sep;99:102216. doi: 10.1016/j.molmet.2025.102216. Epub 2025 Jul 18.
5
S-adenosylmethionine deficit disrupts very low-density lipoprotein metabolism promoting liver lipid accumulation in mice.
J Lipid Res. 2025 May;66(5):100794. doi: 10.1016/j.jlr.2025.100794. Epub 2025 Apr 1.
6
PCK1 inhibits cGAS-STING activation by consumption of GTP to promote tumor immune evasion.
J Exp Med. 2025 May 5;222(5). doi: 10.1084/jem.20240902. Epub 2025 Mar 6.
7
8
The primate gut microbiota contributes to interspecific differences in host metabolism.
Microb Genom. 2024 Dec;10(12). doi: 10.1099/mgen.0.001322.
9
Small molecules targeting selective PCK1 and PGC-1α lysine acetylation cause anti-diabetic action through increased lactate oxidation.
Cell Chem Biol. 2024 Oct 17;31(10):1772-1786.e5. doi: 10.1016/j.chembiol.2024.09.001. Epub 2024 Sep 27.

本文引用的文献

3
FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression.
J Biol Chem. 2006 Apr 14;281(15):10105-17. doi: 10.1074/jbc.M600272200. Epub 2006 Feb 21.
6
Overcoming diabetes-induced hyperglycemia through inhibition of hepatic phosphoenolpyruvate carboxykinase (GTP) with RNAi.
Mol Ther. 2006 Feb;13(2):401-10. doi: 10.1016/j.ymthe.2005.08.026. Epub 2005 Nov 3.
7
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism.
Nature. 2005 Oct 20;437(7062):1109-11. doi: 10.1038/nature03967. Epub 2005 Sep 7.
8
Metabolic control through the PGC-1 family of transcription coactivators.
Cell Metab. 2005 Jun;1(6):361-70. doi: 10.1016/j.cmet.2005.05.004.
9
Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C.
Crit Rev Biochem Mol Biol. 2005 May-Jun;40(3):129-54. doi: 10.1080/10409230590935479.
10
Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes.
Nature. 2004 Dec 23;432(7020):1027-32. doi: 10.1038/nature03047.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验