Suppr超能文献

光合作用的光谱特征。II. 与其他恒星及系外行星大气的共同演化

Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds.

作者信息

Kiang Nancy Y, Segura Antígona, Tinetti Giovanna, Blankenship Robert E, Cohen Martin, Siefert Janet, Crisp David, Meadows Victoria S

机构信息

NASA Goddard Institute for Space Studies, New York, New York 10025, USA.

出版信息

Astrobiology. 2007 Feb;7(1):252-74. doi: 10.1089/ast.2006.0108.

Abstract

As photosynthesis on Earth produces the primary signatures of life that can be detected astronomically at the global scale, a strong focus of the search for extrasolar life will be photosynthesis, particularly photosynthesis that has evolved with a different parent star. We take previously simulated planetary atmospheric compositions for Earth-like planets around observed F2V and K2V, modeled M1V and M5V stars, and around the active M4.5V star AD Leo; our scenarios use Earth's atmospheric composition as well as very low O2 content in case anoxygenic photosynthesis dominates. With a line-by-line radiative transfer model, we calculate the incident spectral photon flux densities at the surface of the planet and under water. We identify bands of available photosynthetically relevant radiation and find that photosynthetic pigments on planets around F2V stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in the near-infrared, in bands at 0.93-1.1 microm, 1.1-1.4 microm, 1.5-1.8 microm, and 1.8-2.5 microm. However, underwater organisms will be restricted to wavelengths shorter than 1.4 microm and more likely below 1.1 microm. M star planets without oxygenic photosynthesis will have photon fluxes above 1.6 microm curtailed by methane. Longer-wavelength, multi-photo-system series would reduce the quantum yield but could allow for oxygenic photosystems at longer wavelengths. A wavelength of 1.1 microm is a possible upper cutoff for electronic transitions versus only vibrational energy; however, this cutoff is not strict, since such energetics depend on molecular configuration. M star planets could be a half to a tenth as productive as Earth in the visible, but exceed Earth if useful photons extend to 1.1 microm for anoxygenic photosynthesis. Under water, organisms would still be able to survive ultraviolet flares from young M stars and acquire adequate light for growth.

摘要

由于地球上的光合作用产生了可在全球范围内通过天文手段检测到的生命主要特征,寻找太阳系外生命的一个重点将是光合作用,特别是随不同母恒星演化而来的光合作用。我们采用了之前针对观测到的F2V和K2V、模拟的M1V和M5V恒星以及活跃的M4.5V恒星AD Leo周围类地行星的行星大气成分模拟结果;我们的方案使用了地球的大气成分以及极低的氧气含量,以防无氧光合作用占主导。通过逐线辐射传输模型,我们计算了行星表面和水下的入射光谱光子通量密度。我们确定了可用的光合相关辐射波段,发现F2V恒星周围行星上的光合色素在蓝光波段吸光度可能达到峰值,K2V恒星周围行星上的光合色素在红橙色波段,而M恒星周围行星上的光合色素在近红外波段,分别在0.93 - 1.1微米、1.1 - 1.4微米、1.5 - 1.8微米和1.8 - 2.5微米波段。然而,水下生物将被限制在波长小于1.4微米,更可能小于1.1微米的范围内。没有氧合光合作用的M恒星行星,波长大于1.6微米的光子通量会因甲烷而减少。波长更长的多光系统序列会降低量子产率,但可能允许在更长波长下存在氧合光系统。1.1微米的波长可能是电子跃迁相对于仅振动能量的一个可能上限;然而,这个截止并不严格,因为这种能量学取决于分子构型。M恒星行星在可见光波段的生产力可能只有地球的二分之一到十分之一,但如果无氧光合作用的有用光子延伸到1.1微米,其生产力可能超过地球。在水下,生物仍然能够在年轻M恒星的紫外线耀斑中存活,并获得足够的光用于生长。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验