Kiang Nancy Y, Siefert Janet, Blankenship Robert E
NASA Goddard Institute for Space Studies, New York, New York 10025, USA.
Astrobiology. 2007 Feb;7(1):222-51. doi: 10.1089/ast.2006.0105.
Why do plants reflect in the green and have a "red edge" in the red, and should extrasolar photosynthesis be the same? We provide (1) a brief review of how photosynthesis works, (2) an overview of the diversity of photosynthetic organisms, their light harvesting systems, and environmental ranges, (3) a synthesis of photosynthetic surface spectral signatures, and (4) evolutionary rationales for photosynthetic surface reflectance spectra with regard to utilization of photon energy and the planetary light environment. We found the "near-infrared (NIR) end" of the red edge to trend from blue-shifted to reddest for (in order) snow algae, temperate algae, lichens, mosses, aquatic plants, and finally terrestrial vascular plants. The red edge is weak or sloping in lichens. Purple bacteria exhibit possibly a sloping edge in the NIR. More studies are needed on pigment-protein complexes, membrane composition, and measurements of bacteria before firm conclusions can be drawn about the role of the NIR reflectance. Pigment absorbance features are strongly correlated with features of atmospheric spectral transmittance: P680 in Photosystem II with the peak surface incident photon flux density at approximately 685 nm, just before an oxygen band at 687.5 nm; the NIR end of the red edge with water absorbance bands and the oxygen A-band at 761 nm; and bacteriochlorophyll reaction center wavelengths with local maxima in atmospheric and water transmittance spectra. Given the surface incident photon flux density spectrum and resonance transfer in light harvesting, we propose some rules with regard to where photosynthetic pigments will peak in absorbance: (1) the wavelength of peak incident photon flux; (2) the longest available wavelength for core antenna or reaction center pigments; and (3) the shortest wavelengths within an atmospheric window for accessory pigments. That plants absorb less green light may not be an inefficient legacy of evolutionary history, but may actually satisfy the above criteria.
为什么植物呈现绿色反射光且在红光区域有“红边”,系外光合作用是否也如此?我们提供了:(1)光合作用工作原理的简要回顾;(2)光合生物多样性、其光捕获系统及环境范围的概述;(3)光合表面光谱特征的综合分析;以及(4)关于光合表面反射光谱在光子能量利用和行星光环境方面的进化原理。我们发现,红边的“近红外(NIR)端”(按顺序)对于雪藻、温带藻类、地衣、苔藓、水生植物以及最后陆生维管植物,从蓝移向最红移动。地衣中的红边较弱或呈倾斜状。紫色细菌在近红外区域可能呈现倾斜的边缘。在就近红外反射率的作用得出确凿结论之前,需要对色素 - 蛋白质复合物、膜组成以及细菌测量进行更多研究。色素吸收特征与大气光谱透过率特征密切相关:光系统II中的P680与表面入射光子通量密度峰值在约685纳米处,恰好在687.5纳米的氧吸收带之前;红边的近红外端与水吸收带以及761纳米处的氧A带相关;细菌叶绿素反应中心波长与大气和水透过率光谱中的局部最大值相关。鉴于表面入射光子通量密度光谱以及光捕获中的共振转移,我们提出了一些关于光合色素吸收峰值位置的规则:(1)入射光子通量峰值的波长;(2)核心天线或反应中心色素可用的最长波长;以及(3)辅助色素在大气窗口内的最短波长。植物吸收较少绿光可能并非进化历史的低效遗留,而实际上可能满足上述标准。