Dymecki Susan M, Kim Jun Chul
Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
Neuron. 2007 Apr 5;54(1):17-34. doi: 10.1016/j.neuron.2007.03.009.
New genetic technologies are transforming nervous system studies in mice, impacting fields from neural development to the neurobiology of disease. Of necessity, alongside these methodological advances, new concepts are taking shape with respect to both vocabulary and form. Here we review aspects of both burgeoning areas. Presented are technologies which, by co-opting site-specific recombinase systems, enable select genes to be turned on or off in specific brain cells of otherwise undisturbed mouse embryos or adults. Manipulated genes can be endogenous loci or inserted transgenes encoding reporter, sensor, or effector molecules, making it now possible to assess not only gene function, but also cell function, origin, fate, connectivity, and behavioral output. From these methodological advances, a new form of molecular neuroscience is emerging that may be said to lean on the concepts of genetic access, genetic lineage, and genetic anatomy – the three ‘Gs’ – much like a general education rests on the basics of reading, ‘riting and ‘rithmetic.
新的基因技术正在改变小鼠神经系统的研究,影响从神经发育到疾病神经生物学等各个领域。不可避免的是,伴随着这些方法学的进步,在词汇和形式方面都有新的概念正在形成。在这里,我们将对这两个新兴领域的各个方面进行综述。本文介绍的技术通过采用位点特异性重组酶系统,能够在未受干扰的小鼠胚胎或成体的特定脑细胞中开启或关闭特定基因。被操纵的基因可以是内源基因座,也可以是编码报告分子、传感器或效应分子的插入转基因,这使得现在不仅能够评估基因功能,还能够评估细胞功能、起源、命运、连接性和行为输出。基于这些方法学的进步,一种新形式的分子神经科学正在兴起,它可以说是依赖于基因访问、基因谱系和基因解剖学这三个“G”的概念,就如同通识教育依赖于阅读、写作和算术这些基础知识一样。