Vitezica Zulma G, Legarra Andrés, Toro Miguel A, Varona Luis
Institut National Polytechnique, École Nationale Supérieure Agronomique de Toulouse, Université de Toulouse, UMR 1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
Institut National de la Recherche Agronomique, UMR 1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France.
Genetics. 2017 Jul;206(3):1297-1307. doi: 10.1534/genetics.116.199406. Epub 2017 May 18.
Genomic prediction methods based on multiple markers have potential to include nonadditive effects in prediction and analysis of complex traits. However, most developments assume a Hardy-Weinberg equilibrium (HWE). Statistical approaches for genomic selection that account for dominance and epistasis in a general context, without assuming HWE (, crosses or homozygous lines), are therefore needed. Our method expands the natural and orthogonal interactions (NOIA) approach, which builds incidence matrices based on genotypic (not allelic) frequencies, to include genome-wide epistasis for an arbitrary number of interacting loci in a genomic evaluation context. This results in an orthogonal partition of the variances, which is not warranted otherwise. We also present the partition of variance as a function of genotypic values and frequencies following Cockerham's orthogonal contrast approach. Then we prove for the first time that, even not in HWE, the multiple-loci NOIA method is equivalent to construct epistatic genomic relationship matrices for higher-order interactions using Hadamard products of additive and dominant genomic orthogonal relationships. A standardization based on the trace of the relationship matrices is, however, needed. We illustrate these results with two simulated F (not in HWE) populations, either in linkage equilibrium (LE), or in linkage disequilibrium (LD) and divergent selection, and pure biological dominant pairwise epistasis. In the LE case, correct and orthogonal estimates of variances were obtained using NOIA genomic relationships but not if relationships were constructed assuming HWE. For the LD simulation, differences were smaller, due to the smaller deviation of the F from HWE. Wrongly assuming HWE to build genomic relationships and estimate variance components yields biased estimates, inflates the total genetic variance, and the estimates are not empirically orthogonal. The NOIA method to build genomic relationships, coupled with the use of Hadamard products for epistatic terms, allows the obtaining of correct estimates in populations either in HWE or not in HWE, and extends to any order of epistatic interactions.
基于多个标记的基因组预测方法有潜力在复杂性状的预测和分析中纳入非加性效应。然而,大多数进展都假定处于哈迪-温伯格平衡(HWE)。因此,需要在不假定HWE(如杂交或纯合系)的一般情况下考虑显性和上位性的基因组选择统计方法。我们的方法扩展了自然正交互作(NOIA)方法,该方法基于基因型(而非等位基因)频率构建关联矩阵,以在基因组评估背景下纳入任意数量互作位点的全基因组上位性。这导致了方差的正交划分,否则无法保证。我们还按照科克伦的正交对比方法,将方差划分表示为基因型值和频率的函数。然后我们首次证明,即使不处于HWE,多位点NOIA方法也等同于使用加性和显性基因组正交关系的哈达玛积构建高阶互作的上位性基因组关系矩阵。不过,需要基于关系矩阵的迹进行标准化。我们用两个模拟的F(不处于HWE)群体来说明这些结果,这两个群体要么处于连锁平衡(LE),要么处于连锁不平衡(LD)和分化选择状态,以及纯生物学显性成对上位性。在LE情况下,使用NOIA基因组关系可获得正确且正交的方差估计,但若假设HWE构建关系则不然。对于LD模拟,差异较小,因为F与HWE的偏差较小。错误地假设HWE构建基因组关系并估计方差成分会产生有偏差的估计,夸大总遗传方差,且估计在经验上不是正交的。构建基因组关系的NOIA方法,结合使用哈达玛积表示上位性项,使得在处于HWE或不处于HWE的群体中都能获得正确估计,并可扩展到任何阶次的上位性互作。