Suppr超能文献

利用模式生物分析自然性状中的上位性。

Analysis of Epistasis in Natural Traits Using Model Organisms.

机构信息

Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332 USA.

Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332 USA; Department of Physics, Georgia Institute of Technology, Atlanta, GA, 30332 USA.

出版信息

Trends Genet. 2018 Nov;34(11):883-898. doi: 10.1016/j.tig.2018.08.002. Epub 2018 Aug 27.

Abstract

The ability to detect and understand epistasis in natural populations is important for understanding how biological traits are influenced by genetic variation. However, identification and characterization of epistasis in natural populations remains difficult due to statistical issues that arise as a result of multiple comparisons, and the fact that most genetic variants segregate at low allele frequencies. In this review, we discuss how model organisms may be used to manipulate genotypic combinations to power the detection of epistasis as well as test interactions between specific genes. Findings from a number of species indicate that statistical epistasis is pervasive between natural genetic variants. However, the properties of experimental systems that enable analysis of epistasis also constrain extrapolation of these results back into natural populations.

摘要

在自然种群中检测和理解上位性的能力对于理解生物特征是如何受到遗传变异影响的非常重要。然而,由于多次比较所产生的统计问题,以及大多数遗传变异以低等位基因频率分离的事实,在自然种群中识别和描述上位性仍然很困难。在这篇综述中,我们讨论了模式生物如何被用来操纵基因型组合,以提高上位性的检测能力,并测试特定基因之间的相互作用。来自许多物种的研究结果表明,自然遗传变异之间普遍存在统计上位性。然而,能够分析上位性的实验系统的特性也限制了将这些结果推断回自然种群。

相似文献

1
Analysis of Epistasis in Natural Traits Using Model Organisms.利用模式生物分析自然性状中的上位性。
Trends Genet. 2018 Nov;34(11):883-898. doi: 10.1016/j.tig.2018.08.002. Epub 2018 Aug 27.
6
Genetic backgrounds and hidden trait complexity in natural populations.自然种群中的遗传背景和隐性特征复杂性。
Curr Opin Genet Dev. 2017 Dec;47:48-53. doi: 10.1016/j.gde.2017.08.009. Epub 2017 Sep 12.
9
New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation.作物数量性状变异中上位性分析的新视野。
Annu Rev Genet. 2020 Nov 23;54:287-307. doi: 10.1146/annurev-genet-050720-122916. Epub 2020 Sep 1.

引用本文的文献

2
Polygenic prediction and gene regulation networks.多基因预测与基因调控网络
R Soc Open Sci. 2025 May 21;12(5):241992. doi: 10.1098/rsos.241992. eCollection 2025 May.
9
Mapping mitonuclear epistasis using a novel recombinant yeast population.利用新型重组酵母群体进行核质互作定位。
PLoS Genet. 2023 Mar 29;19(3):e1010401. doi: 10.1371/journal.pgen.1010401. eCollection 2023 Mar.
10
Intragenic compensation through the lens of deep mutational scanning.从深度突变扫描视角看基因内补偿
Biophys Rev. 2022 Oct 26;14(5):1161-1182. doi: 10.1007/s12551-022-01005-w. eCollection 2022 Oct.

本文引用的文献

2
Highly parallel genome variant engineering with CRISPR-Cas9.利用 CRISPR-Cas9 进行高度平行的基因组变异工程。
Nat Genet. 2018 Apr;50(4):510-514. doi: 10.1038/s41588-018-0087-y. Epub 2018 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验