Suppr超能文献

通过基因转换进行的DNA双链断裂修复的进化:噬菌体与限制修饰系统之间的共同进化。

Evolution of DNA double-strand break repair by gene conversion: coevolution between a phage and a restriction-modification system.

作者信息

Yahara Koji, Horie Ryota, Kobayashi Ichizo, Sasaki Akira

机构信息

Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Science and Institute of Medical Science, University of Tokyo, Tokyo, Japan.

出版信息

Genetics. 2007 May;176(1):513-26. doi: 10.1534/genetics.106.056150. Epub 2007 Apr 3.

Abstract

The necessity to repair genome damage has been considered to be an immediate factor responsible for the origin of sex. Indeed, attack by a cellular restriction enzyme of invading DNA from several bacteriophages initiates recombinational repair by gene conversion if there is homologous DNA. In this work, we modeled the interaction between a bacteriophage and a bacterium carrying a restriction enzyme as antagonistic coevolution. We assume a locus on the bacteriophage genome has either a restriction-sensitive or a restriction-resistant allele, and another locus determines whether it is recombination/repair proficient or defective. A restriction break can be repaired by a co-infecting phage genome if one of them is recombination/repair proficient. We define the fitness of phage (resistant/sensitive and repair-positive/-negative) genotypes and bacterial (restriction-positive/-negative) genotypes by assuming random encounter of the genotypes, with given probabilities of single and double infections, and the costs of resistance, repair, and restriction. Our results show the evolution of the repair allele depends on b(1)/b(0), the ratio of the burst size b(1) under damage to host cell physiology induced by an unrepaired double-strand break to the default burst size b(0). It was not until this effect was taken into account that the evolutionary advantage of DNA repair became apparent.

摘要

修复基因组损伤的必要性被认为是导致有性生殖起源的直接因素。事实上,如果存在同源DNA,来自几种噬菌体的入侵DNA受到细胞限制酶的攻击会通过基因转换启动重组修复。在这项工作中,我们将噬菌体与携带限制酶的细菌之间的相互作用建模为拮抗协同进化。我们假设噬菌体基因组上的一个位点有一个限制敏感或限制抗性等位基因,另一个位点决定它是重组/修复 proficient 还是有缺陷。如果其中一个噬菌体基因组是重组/修复 proficient,那么限制断裂可以由共同感染的噬菌体基因组修复。我们通过假设基因型的随机相遇、给定的单感染和双感染概率以及抗性、修复和限制的成本,来定义噬菌体(抗性/敏感和修复阳性/阴性)基因型和细菌(限制阳性/阴性)基因型的适应性。我们的结果表明,修复等位基因的进化取决于b(1)/b(0),即未修复的双链断裂对宿主细胞生理造成损伤时的爆发大小b(1)与默认爆发大小b(0)的比值。直到考虑到这种效应,DNA修复的进化优势才变得明显。

相似文献

2
In vitro repair of double-strand breaks accompanied by recombination in bacteriophage T7 DNA.
J Bacteriol. 1992 Jan;174(1):155-60. doi: 10.1128/jb.174.1.155-160.1992.
3
Selfishness and death: raison d'être of restriction, recombination and mitochondria.
Trends Genet. 1998 Sep;14(9):368-74. doi: 10.1016/s0168-9525(98)01532-7.
4
On the mutagenicity of homologous recombination and double-strand break repair in bacteriophage.
DNA Repair (Amst). 2011 Jan 2;10(1):16-23. doi: 10.1016/j.dnarep.2010.09.006. Epub 2010 Oct 15.
5
7
MTE1 Functions with MPH1 in Double-Strand Break Repair.
Genetics. 2016 May;203(1):147-57. doi: 10.1534/genetics.115.185454. Epub 2016 Feb 26.
8
Biased Gene Conversion in Rhizobium etli Is Caused by Preferential Double-Strand Breaks on One of the Recombining Homologs.
J Bacteriol. 2015 Nov 23;198(3):591-9. doi: 10.1128/JB.00768-15. Print 2016 Feb 1.

引用本文的文献

1
Investigation of recombination-intense viral groups and their genes in the Earth's virome.
Sci Rep. 2018 Jul 31;8(1):11496. doi: 10.1038/s41598-018-29272-2.

本文引用的文献

1
PHAGE-MEDIATED SELECTION AND THE EVOLUTION AND MAINTENANCE OF RESTRICTION-MODIFICATION.
Evolution. 1993 Apr;47(2):556-575. doi: 10.1111/j.1558-5646.1993.tb02113.x.
3
Evolutionarily stable mutation rate in a periodically changing environment.
Genetics. 1989 Jan;121(1):163-74. doi: 10.1093/genetics/121.1.163.
4
Genetic addiction: selfish gene's strategy for symbiosis in the genome.
Genetics. 2006 Feb;172(2):1309-23. doi: 10.1534/genetics.105.042895. Epub 2005 Nov 19.
6
The biology of restriction and anti-restriction.
Curr Opin Microbiol. 2005 Aug;8(4):466-72. doi: 10.1016/j.mib.2005.06.003.
8
Game-theoretical approaches to studying the evolution of biochemical systems.
Trends Biochem Sci. 2005 Jan;30(1):20-5. doi: 10.1016/j.tibs.2004.11.006.
9
Recombination proteins in yeast.
Annu Rev Genet. 2004;38:233-71. doi: 10.1146/annurev.genet.38.072902.091500.
10
Reduced fecundity is the cost of cheating in RNA virus phi6.
Proc Biol Sci. 2004 Nov 7;271(1554):2275-82. doi: 10.1098/rspb.2004.2833.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验