Suppr超能文献

功能基因组学有助于鉴定铜绿假单胞菌中精氨酸转氨酶途径的基因。

Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa.

作者信息

Yang Zhe, Lu Chung-Dar

机构信息

Department of Biology, Georgia State University, Atlanta, GA 30303, USA.

出版信息

J Bacteriol. 2007 Jun;189(11):3945-53. doi: 10.1128/JB.00261-07. Epub 2007 Apr 6.

Abstract

Arginine utilization in Pseudomonas aeruginosa with multiple catabolic pathways represents one of the best examples of the metabolic versatility of this organism. To identify genes involved in arginine catabolism, we have employed DNA microarrays to analyze the transcriptional profiles of this organism in response to L-arginine. While most of the genes involved in arginine uptake, regulation, and metabolism have been identified as members of the ArgR (arginine-responsive regulatory protein) regulon in our previous study, they did not include any genes of the arginine dehydrogenase (ADH) pathway. In this study, 18 putative transcriptional units of 38 genes, including the two known genes of the ADH pathway, kauB and gbuA, were found to be inducible by exogenous L-arginine in the absence of ArgR. To identify the missing genes that encode enzymes for the initial steps of the ADH pathway, the potential physiological functions of those candidate genes in arginine utilization were studied by growth phenotype analysis of knockout mutants. Expression of these genes was induced by L-arginine in an aruF mutant strain devoid of a functional arginine succinyltransferase pathway, the major route of arginine utilization. Disruption of dadA, a putative catabolic alanine dehydrogenase-encoding gene, in the aruF mutant produced no growth on L-arginine, suggesting the involvement of L-alanine in arginine catabolism. This hypothesis was further supported by the detection of an L-arginine-inducible arginine:pyruvate transaminase activity in the aruF mutant. Knockout of aruH and aruI, which encode an arginine:pyruvate transaminase and a 2-ketoarginine decarboxylase in an operon, also abolished the ability of the aruF mutant to grow on L-arginine. The results of high-performance liquid chromatography analysis demonstrated consumption of 2-ketoarginine and suggested that generation of 4-guanidinobutyraldehyde occurred in the aruF mutant but not in the aruF aruI mutant. These results led us to propose the arginine transaminase pathway that removes the alpha-amino group of L-arginine via transamination instead of oxidative deamination by dehydrogenase or oxidase as originally proposed. In the same genetic locus, we also identified a two-component system, AruRS, for the regulation of arginine-responsive induction of the arginine transaminase pathway. This work depicted a wider network of arginine metabolism than we previously recognized.

摘要

在具有多种分解代谢途径的铜绿假单胞菌中,精氨酸的利用是该生物体代谢多功能性的最佳例子之一。为了鉴定参与精氨酸分解代谢的基因,我们使用DNA微阵列来分析该生物体对L-精氨酸响应的转录谱。虽然在我们之前的研究中,大多数参与精氨酸摄取、调节和代谢的基因已被鉴定为ArgR(精氨酸响应调节蛋白)调控子的成员,但它们不包括精氨酸脱氢酶(ADH)途径的任何基因。在本研究中,发现38个基因的18个推定转录单元,包括ADH途径的两个已知基因kauB和gbuA,在没有ArgR的情况下可被外源L-精氨酸诱导。为了鉴定编码ADH途径初始步骤酶的缺失基因,通过敲除突变体的生长表型分析研究了这些候选基因在精氨酸利用中的潜在生理功能。这些基因的表达在缺乏功能性精氨酸琥珀酰转移酶途径(精氨酸利用的主要途径)的aruF突变体菌株中被L-精氨酸诱导。在aruF突变体中破坏推定的分解代谢丙氨酸脱氢酶编码基因dadA,导致在L-精氨酸上无法生长,这表明L-丙氨酸参与精氨酸分解代谢。aruF突变体中L-精氨酸诱导的精氨酸:丙酮酸转氨酶活性的检测进一步支持了这一假设。敲除aruH和aruI,它们在一个操纵子中编码精氨酸:丙酮酸转氨酶和2-酮精氨酸脱羧酶,也消除了aruF突变体在L-精氨酸上生长的能力。高效液相色谱分析结果表明2-酮精氨酸被消耗,并表明在aruF突变体中发生了4-胍基丁醛的生成,但在aruF aruI突变体中未发生。这些结果使我们提出精氨酸转氨酶途径,该途径通过转氨作用去除L-精氨酸的α-氨基,而不是如最初提出的通过脱氢酶或氧化酶进行氧化脱氨。在同一基因位点,我们还鉴定了一个双组分系统AruRS,用于调节精氨酸转氨酶途径的精氨酸响应诱导。这项工作描绘了一个比我们之前认识到的更广泛的精氨酸代谢网络。

相似文献

引用本文的文献

1
Expression regulation of bacterial lipase genes: a review.细菌脂肪酶基因的表达调控:综述
Front Microbiol. 2025 May 21;16:1592059. doi: 10.3389/fmicb.2025.1592059. eCollection 2025.
3
Effect of L-arginine on cystic fibrosis biofilms.精氨酸对囊性纤维化生物膜的影响。
Antimicrob Agents Chemother. 2024 Aug 7;68(8):e0033624. doi: 10.1128/aac.00336-24. Epub 2024 Jul 18.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验