Peñas María M, Hervás-Aguilar América, Múnera-Huertas Tatiana, Reoyo Elena, Peñalva Miguel A, Arst Herbert N, Tilburn Joan
Department of Molecular Microbiology and Infection, Imperial College London, Flowers Building, Armstrong Road, London, United Kingdom.
Eukaryot Cell. 2007 Jun;6(6):960-70. doi: 10.1128/EC.00047-07. Epub 2007 Apr 6.
The Aspergillus nidulans pH-responsive transcription factor PacC is modulated by limited, two-step proteolysis. The first, pH-regulated cleavage occurs in the 24-residue highly conserved "signaling protease box" in response to the alkaline pH signal. This is transduced by the Pal signaling pathway, containing the predicted calpain-like cysteine protease and likely signaling protease, PalB. In this work, we carried out classical mutational analysis of the putative signaling protease PalB, and we describe 9 missense and 18 truncating loss-of-function (including null) mutations. Mutations in the region of and affecting directly the predicted catalytic cysteine strongly support the deduction that PalB is a cysteine protease. Truncating and missense mutations affecting the C terminus highlight the importance of this region. Analysis of three-hemagglutinin-tagged PalB in Western blots demonstrates that PalB levels are independent of pH and Pal signal transduction. We have followed the processing of MYC(3)-tagged PacC in Western blots. We show unequivocally that PalB is essential for signaling proteolysis and is definitely not the processing protease. In addition, we have replaced 15 residues of the signaling protease box of MYC(3)-tagged PacC (pacC900) with alanine. The majority of these substitutions are silent. Leu481Ala, Tyr493Ala, and Gln499Ala result in delayed PacC processing in response to shifting from acidic to alkaline medium, as determined by Western blot analysis. Leu498Ala reduces function much more markedly, as determined by plate tests and processing recalcitrance. Excepting Leu498, this demonstrates that PacC signaling proteolysis is largely independent of sequence in the cleavage region.
构巢曲霉pH响应转录因子PacC受有限的两步蛋白酶解作用调控。第一步,pH调节的切割发生在24个氨基酸的高度保守“信号蛋白酶框”中,以响应碱性pH信号。这是由Pal信号通路转导的,该通路包含预测的钙蛋白酶样半胱氨酸蛋白酶和可能的信号蛋白酶PalB。在这项工作中,我们对假定的信号蛋白酶PalB进行了经典突变分析,并描述了9个错义突变和18个截短的功能丧失(包括无效)突变。在预测的催化半胱氨酸区域及直接影响该区域的突变有力地支持了PalB是一种半胱氨酸蛋白酶的推断。影响C末端的截短和错义突变突出了该区域的重要性。在蛋白质免疫印迹中对三血凝素标签的PalB进行分析表明,PalB水平与pH和Pal信号转导无关。我们在蛋白质免疫印迹中追踪了MYC(3)标签的PacC的加工过程。我们明确表明,PalB对于信号蛋白酶解是必不可少的,并且绝对不是加工蛋白酶。此外,我们用丙氨酸取代了MYC(3)标签的PacC(pacC900)的信号蛋白酶框的15个氨基酸。这些取代中的大多数是沉默的。通过蛋白质免疫印迹分析确定,Leu481Ala、Tyr493Ala和Gln499Ala在从酸性培养基转变为碱性培养基时导致PacC加工延迟。通过平板试验和加工抗性确定,Leu498Ala更显著地降低功能。除了Leu498之外,这表明PacC信号蛋白酶解在很大程度上与切割区域的序列无关。