Suppr超能文献

在线头颈部计算机断层扫描图像的自动勾画:迈向在线自适应放射治疗

Automatic delineation of on-line head-and-neck computed tomography images: toward on-line adaptive radiotherapy.

作者信息

Zhang Tiezhi, Chi Yuwei, Meldolesi Elisa, Yan Di

机构信息

Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI 48073, USA.

出版信息

Int J Radiat Oncol Biol Phys. 2007 Jun 1;68(2):522-30. doi: 10.1016/j.ijrobp.2007.01.038. Epub 2007 Apr 6.

Abstract

PURPOSE

To develop and validate a fully automatic region-of-interest (ROI) delineation method for on-line adaptive radiotherapy.

METHODS AND MATERIALS

On-line adaptive radiotherapy requires a robust and automatic image segmentation method to delineate ROIs in on-line volumetric images. We have implemented an atlas-based image segmentation method to automatically delineate ROIs of head-and-neck helical computed tomography images. A total of 32 daily computed tomography images from 7 head-and-neck patients were delineated using this automatic image segmentation method. Manually drawn contours on the daily images were used as references in the evaluation of automatically delineated ROIs. Two methods were used in quantitative validation: (1) the dice similarity coefficient index, which indicates the overlapping ratio between the manually and automatically delineated ROIs; and (2) the distance transformation, which yields the distances between the manually and automatically delineated ROI surfaces.

RESULTS

Automatic segmentation showed agreement with manual contouring. For most ROIs, the dice similarity coefficient indexes were approximately 0.8. Similarly, the distance transformation evaluation results showed that the distances between the manually and automatically delineated ROI surfaces were mostly within 3 mm. The distances between two surfaces had a mean of 1 mm and standard deviation of <2 mm in most ROIs.

CONCLUSION

With atlas-based image segmentation, it is feasible to automatically delineate ROIs on the head-and-neck helical computed tomography images in on-line adaptive treatments.

摘要

目的

开发并验证一种用于在线自适应放疗的全自动感兴趣区域(ROI)勾画方法。

方法与材料

在线自适应放疗需要一种强大的自动图像分割方法来在在线容积图像中勾画ROI。我们实施了一种基于图谱的图像分割方法来自动勾画头颈部螺旋计算机断层扫描图像的ROI。使用这种自动图像分割方法对7名头颈部患者的32张每日计算机断层扫描图像进行了勾画。每日图像上手动绘制的轮廓被用作评估自动勾画的ROI的参考。在定量验证中使用了两种方法:(1)骰子相似系数指数,它表示手动和自动勾画的ROI之间的重叠率;(2)距离变换,它得出手动和自动勾画的ROI表面之间的距离。

结果

自动分割与手动轮廓勾画显示出一致性。对于大多数ROI,骰子相似系数指数约为0.8。同样,距离变换评估结果表明,手动和自动勾画的ROI表面之间的距离大多在3毫米以内。在大多数ROI中,两个表面之间的距离平均为1毫米,标准差小于2毫米。

结论

通过基于图谱的图像分割,在在线自适应治疗中对头颈部螺旋计算机断层扫描图像自动勾画ROI是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验