Suppr超能文献

局部神经网络放电模式的序列配置模型

Sequential configuration model for firing patterns in local neural networks.

作者信息

MacGregor R J

机构信息

Aerospace Engineering Sciences, University of Colorado, Boulder 80309-0429.

出版信息

Biol Cybern. 1991;65(5):339-49. doi: 10.1007/BF00216967.

Abstract

This paper presents a sequential configuration model to represent the coordinated firing patterns of memory traces in groups of neurons in local networks. Computer simulations are used to study the dynamic properties of memory traces selectively retrieved from networks in which multiple memory traces have been embedded according to the sequential configuration model. Distinct memory traces which utilize the same neurons, but differ only in temporal sequencing are selectively retrievable. Firing patterns of constituent neurons of retrieved memory traces exhibit the main properties of neurons observed in multi microelectrode recordings. The paper shows how to adjust relative synaptic weightings so as to control the disruptive influences of cross-talk in multipy-embedded networks. The theoretical distinction between (primarily anatomical) beds and (primarily physiological) realizations underlines the fundamentally stochastic nature of network firing patterns, and allows the definition of 4 degrees of clarity of retrieved memory traces.

摘要

本文提出了一种序列配置模型,以表示局部网络中神经元群体中记忆痕迹的协同放电模式。利用计算机模拟来研究从根据序列配置模型嵌入了多个记忆痕迹的网络中选择性检索出的记忆痕迹的动态特性。利用相同神经元但仅在时间序列上不同的不同记忆痕迹是可选择性检索的。检索到的记忆痕迹的组成神经元的放电模式表现出在多微电极记录中观察到的神经元的主要特性。本文展示了如何调整相对突触权重,以控制多嵌入网络中串扰的干扰影响。(主要是解剖学上的)层与(主要是生理学上的)实现之间的理论区别强调了网络放电模式的基本随机性质,并允许定义检索到的记忆痕迹的4种清晰度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验