Suppr超能文献

能够进行代表性变换、有限泛化和联想记忆的选择性网络。

Selective networks capable of representative transformations, limited generalizations, and associative memory.

作者信息

Edelman G M, Reeke G N

出版信息

Proc Natl Acad Sci U S A. 1982 Mar;79(6):2091-5. doi: 10.1073/pnas.79.6.2091.

Abstract

Two parallel sets of selective networks composed of intercommunicating neuron-like elements have been connected to produce a new kind of automaton capable of limited recognition of two-dimensional patterns. Salient features of this automaton are (i) preestablished unchanging connectivity, (ii) preassigned connection strengths that are selectively altered according to experience, (iii) local feature detection in one network with simultaneous global feature correlation in the other, and (iv) reentrant interactions between the two networks to generate a new function, associative memory. No forced learning, explicit semantic rules, or a priori instructions are used.

摘要

由相互连通的类神经元元件组成的两组并行选择网络已连接在一起,以产生一种能够对二维模式进行有限识别的新型自动机。这种自动机的显著特征包括:(i)预先建立的不变连通性;(ii)根据经验选择性改变的预先分配的连接强度;(iii)一个网络中的局部特征检测与另一个网络中的全局特征同时关联;以及(iv)两个网络之间的折返相互作用以产生新功能——联想记忆。未使用强制学习、明确的语义规则或先验指令。

相似文献

4
Memory topology of neural nets.神经网络的内存拓扑结构。
J Theor Biol. 1979 Oct 22;80(4):505-35. doi: 10.1016/0022-5193(79)90091-2.
5
Multiplicative contexts in associative memories.关联记忆中的乘法上下文。
Biosystems. 1994;32(3):145-61. doi: 10.1016/0303-2647(94)90038-8.
6
Associative sequential recall in a synaptic matrix.突触矩阵中的联想序列回忆
J Theor Biol. 1979 Dec 7;81(3):569-76. doi: 10.1016/0022-5193(79)90054-7.
8
Sequential state generation by model neural networks.模型神经网络的序列状态生成
Proc Natl Acad Sci U S A. 1986 Dec;83(24):9469-73. doi: 10.1073/pnas.83.24.9469.

引用本文的文献

7
Neuron learning to brain organization.神经元学习与大脑组织
Cell Biophys. 1986 Dec;9(1-2):103-44. doi: 10.1007/BF02797377.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验