Suppr超能文献

建构主义编码:从选择性反馈中学习。

Constructivist coding: learning from selective feedback.

作者信息

Elwin Ebba, Juslin Peter, Olsson Henrik, Enkvist Tommy

机构信息

Uppsala University, Uppsala, Sweden.

出版信息

Psychol Sci. 2007 Feb;18(2):105-10. doi: 10.1111/j.1467-9280.2007.01856.x.

Abstract

Although much learning in real-life environments relies on highly selective feedback about outcomes, virtually all cognitive models of learning, judgment, and categorization assume complete and representative feedback. We investigated empirically the effect of selective feedback on decision making and how people code experience with selective feedback. The results showed that, in contrast to a commonly raised concern, performance was not impaired following learning with selective and biased feedback. Furthermore, even in a simple decision task, the experience that people acquired was not a mere recording of the observed outcomes, but rather a reconstruction from general task knowledge.

摘要

尽管在现实生活环境中的许多学习都依赖于关于结果的高度选择性反馈,但几乎所有关于学习、判断和分类的认知模型都假定反馈是完整且具有代表性的。我们通过实证研究了选择性反馈对决策的影响,以及人们如何对选择性反馈的经验进行编码。结果表明,与普遍提出的担忧相反,在通过选择性和有偏差的反馈进行学习后,表现并未受损。此外,即使在一个简单的决策任务中,人们获得的经验也不仅仅是对观察到的结果的记录,而是基于一般任务知识的重构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验