Hogarth Robin M, Karelaia Natalia
ICREA, Barcelona, Spain.
Psychol Rev. 2007 Jul;114(3):733-58. doi: 10.1037/0033-295X.114.3.733.
Much research has highlighted incoherent implications of judgmental heuristics, yet other findings have demonstrated high correspondence between predictions and outcomes. At the same time, judgment has been well modeled in the form of as if linear models. Accepting the probabilistic nature of the environment, the authors use statistical tools to model how the performance of heuristic rules varies as a function of environmental characteristics. They further characterize the human use of linear models by exploring effects of different levels of cognitive ability. They illustrate with both theoretical analyses and simulations. Results are linked to the empirical literature by a meta-analysis of lens model studies. Using the same tasks, the authors estimate the performance of both heuristics and humans where the latter are assumed to use linear models. Their results emphasize that judgmental accuracy depends on matching characteristics of rules and environments and highlight the trade-off between using linear models and heuristics. Whereas the former can be cognitively demanding, the latter are simple to implement. However, heuristics require knowledge to indicate when they should be used.
许多研究都强调了判断启发式方法存在不连贯的影响,但其他研究结果表明预测与结果之间具有高度的一致性。与此同时,判断已经以“仿佛线性模型”的形式得到了很好的建模。作者们承认环境具有概率性质,他们使用统计工具来模拟启发式规则的性能如何随环境特征而变化。他们通过探索不同认知能力水平的影响,进一步刻画了人类对线性模型的使用情况。他们通过理论分析和模拟进行了说明。通过对透镜模型研究的荟萃分析,将结果与实证文献联系起来。作者们使用相同的任务,估计了启发式方法和假设使用线性模型的人类的表现。他们的结果强调,判断准确性取决于规则与环境的匹配特征,并突出了使用线性模型和启发式方法之间的权衡。虽然前者在认知上要求较高,但后者易于实施。然而,启发式方法需要知识来表明何时应该使用它们。