Suppr超能文献

线性判断的决定因素:透镜模型研究的元分析

Determinants of linear judgment: a meta-analysis of lens model studies.

作者信息

Karelaia Natalia, Hogarth Robin M

机构信息

Faculty of Business and Economics, Université de Lausanne, Internef, 1015 Lausanne-Dorigny, Switzerland.

出版信息

Psychol Bull. 2008 May;134(3):404-26. doi: 10.1037/0033-2909.134.3.404.

Abstract

The mathematical representation of E. Brunswik's (1952) lens model has been used extensively to study human judgment and provides a unique opportunity to conduct a meta-analysis of studies that covers roughly 5 decades. Specifically, the authors analyzed statistics of the "lens model equation" (L. R. Tucker, 1964) associated with 249 different task environments obtained from 86 articles. On average, fairly high levels of judgmental achievement were found, and people were seen to be capable of achieving similar levels of cognitive performance in noisy and predictable environments. Further, the effects of task characteristics that influence judgment (numbers and types of cues, inter-cue redundancy, function forms and cue weights in the ecology, laboratory versus field studies, and experience with the task) were identified and estimated. A detailed analysis of learning studies revealed that the most effective form of feedback was information about the task. The authors also analyzed empirically under what conditions the application of bootstrapping--or replacing judges by their linear models--is advantageous. Finally, the authors note shortcomings of the kinds of studies conducted to date, limitations in the lens model methodology, and possibilities for future research.

摘要

E. 布伦斯维克(1952年)的透镜模型的数学表示已被广泛用于研究人类判断,并为对大约涵盖50年的研究进行元分析提供了独特机会。具体而言,作者分析了从86篇文章中获取的与249种不同任务环境相关的“透镜模型方程”(L. R. 塔克,1964年)的统计数据。平均而言,发现判断成就水平相当高,并且人们被认为能够在嘈杂和可预测的环境中达到相似的认知表现水平。此外,还确定并估计了影响判断的任务特征的影响(线索的数量和类型、线索间冗余、生态中的函数形式和线索权重、实验室研究与实地研究以及任务经验)。对学习研究的详细分析表明,最有效的反馈形式是关于任务的信息。作者还通过实证分析了在何种条件下应用自举法——即用线性模型取代评判者——是有利的。最后,作者指出了迄今为止所进行的各类研究的缺点、透镜模型方法的局限性以及未来研究的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验