Suppr超能文献

视网膜褪黑素的节律性调节:代谢途径、神经化学机制及眼内生物钟

Rhythmic regulation of retinal melatonin: metabolic pathways, neurochemical mechanisms, and the ocular circadian clock.

作者信息

Cahill G M, Grace M S, Besharse J C

机构信息

Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City 66103.

出版信息

Cell Mol Neurobiol. 1991 Oct;11(5):529-60. doi: 10.1007/BF00734814.

Abstract
  1. Current knowledge of the mechanisms of circadian and photic regulation of retinal melatonin in vertebrates is reviewed, with a focus on recent progress and unanswered questions. 2. Retinal melatonin synthesis is elevated at night, as a result of acute suppression by light and rhythmic regulation by a circadian oscillator, or clock, which has been localized to the eye in some species. 3. The development of suitable in vitro retinal preparations, particularly the eyecup from the African clawed frog, Xenopus laevis, has enabled identification of neural, cellular, and molecular mechanisms of retinal melatonin regulation. 4. Recent findings indicate that retinal melatonin levels can be regulated at multiple points in indoleamine metabolic pathways, including synthesis and availability of the precursor serotonin, activity of the enzyme serotonin N-acetyltransferase, and a novel pathway for degradation of melatonin within the retina. 5. Retinal dopamine appears to act through D2 receptors as a signal for light in this system, both in the acute suppression of melatonin synthesis and in the entrainment of the ocular circadian oscillator. 6. A recently developed in vitro system that enables high-resolution measurement of retinal circadian rhythmicity for mechanistic analysis of the circadian oscillator is described, along with preliminary results that suggest its potential for elucidating general circadian mechanisms. 7. A model describing hypothesized interactions among circadian, neurochemical, and cellular mechanisms in regulation of retinal melatonin is presented.
摘要
  1. 本文综述了脊椎动物视网膜褪黑素昼夜节律和光调节机制的现有知识,重点关注近期进展和未解决的问题。2. 视网膜褪黑素的合成在夜间升高,这是由于光的急性抑制和昼夜节律振荡器(或生物钟)的节律调节所致,在某些物种中,生物钟已定位在眼睛中。3. 合适的体外视网膜制剂的开发,特别是非洲爪蟾(非洲爪蟾)的眼杯,使得能够识别视网膜褪黑素调节的神经、细胞和分子机制。4. 最近的研究结果表明,视网膜褪黑素水平可以在吲哚胺代谢途径的多个点进行调节,包括前体色氨酸的合成和可用性、色氨酸N-乙酰转移酶的活性以及视网膜内褪黑素降解的新途径。5. 视网膜多巴胺似乎通过D2受体作为该系统中光的信号起作用,既参与褪黑素合成的急性抑制,也参与眼昼夜节律振荡器的同步。6. 描述了一种最近开发的体外系统,该系统能够对视网膜昼夜节律进行高分辨率测量,用于昼夜节律振荡器的机制分析,并给出了初步结果,表明其在阐明一般昼夜节律机制方面的潜力。7. 提出了一个模型,描述了昼夜节律、神经化学和细胞机制在视网膜褪黑素调节中的假设相互作用。

相似文献

6
Symphony of rhythms in the Xenopus laevis retina.非洲爪蟾视网膜中的节律交响曲。
Microsc Res Tech. 2000 Sep 1;50(5):360-72. doi: 10.1002/1097-0029(20000901)50:5<360::AID-JEMT5>3.0.CO;2-B.

引用本文的文献

5
IMI - Report on Experimental Models of Emmetropization and Myopia.IMI-正视化和近视实验模型报告。
Invest Ophthalmol Vis Sci. 2019 Feb 28;60(3):M31-M88. doi: 10.1167/iovs.18-25967.
7
Melanopsin, photosensitive ganglion cells, and seasonal affective disorder.黑视蛋白、感光神经节细胞与季节性情感障碍。
Neurosci Biobehav Rev. 2013 Mar;37(3):229-39. doi: 10.1016/j.neubiorev.2012.12.009. Epub 2012 Dec 31.

本文引用的文献

8
[THE EFFECT OF MALATONIN ON PIGMENTED RETINAL CELLS IN FROGS].
Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Jun 2;284:160-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验