Suppr超能文献

关于一个大型、多重连接的医学信念网络上似然加权模拟的实证分析。

An empirical analysis of likelihood-weighting simulation on a large, multiply connected medical belief network.

作者信息

Shwe M, Cooper G

机构信息

Stanford University.

出版信息

Comput Biomed Res. 1991 Oct;24(5):453-75. doi: 10.1016/0010-4809(91)90020-w.

Abstract

We are developing a probabilistic reformulation of the Quick Medical Reference (QMR) system. Our current probabilistic model of the QMR knowledge base of internal medicine consists of a two-level, multiply connected, belief network. Because of the size and connectivity of this belief network, most exact algorithms for calculating the posterior marginal probabilities of diseases are not applicable. In this paper, we analyze the convergence properties of an approximation algorithm, called likelihood-weighting simulation, on the QMR-DT belief network. Specifically, on two difficult diagnostic cases, we examine the effects of Markov blanket scoring, importance sampling, and self-importance sampling, demonstrating that the Markov blanket scoring and self-importance sampling significantly improve the convergence of the simulation on our model.

摘要

我们正在开发一种快速医学参考(QMR)系统的概率性重新表述。我们当前关于内科QMR知识库的概率模型由一个两级、多重连接的信念网络组成。由于这个信念网络的规模和连接性,大多数用于计算疾病后验边缘概率的精确算法都不适用。在本文中,我们分析了一种称为似然加权模拟的近似算法在QMR-DT信念网络上的收敛特性。具体而言,在两个困难的诊断案例上,我们研究了马尔可夫毯评分、重要性采样和自重要性采样的效果,证明了马尔可夫毯评分和自重要性采样显著提高了我们模型模拟的收敛性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验